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Abstract
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tor—based on the minimum-variance zero-beta portfolio—converges toward the mean
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To quantify this mechanism, I introduce a new investment-based measure of model
misspecification: the maximum Sharpe ratio attainable by zero-investment, zero-beta
portfolios. This measure captures the economic magnitude of pricing errors and links
model misspecification to empirically observable investment opportunities. Studying a
comprehensive set of classical and modern factor models, I find substantial misspecifi-
cation, explaining why all models yield similarly elevated zero-beta rates. Simulation
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pirical magnitude of the puzzle even when the true risk-free rate is low.
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1. Introduction

The zero-beta rate, defined as the expected return of a portfolio orthogonal to the stochas-

tic discount factor (SDF), has long occupied a central place in theoretical and empirical asset

pricing. Since the seminal contributions of Black (1972) and Black, Jensen, and Scholes

(1972), the notion of a zero-beta portfolio—one uncorrelated with the factor portfolio—has

provided the foundation for asset pricing models that operate without a risk-free asset. In

such settings, the zero-beta rate serves as a substitute for the unobservable risk-free rate,

representing the expected return on a portfolio that bears no systematic risk.

Within the CAPM framework, empirical estimates of this rate have persistently appeared

high, often far exceeding Treasury bill yields or other risk-free proxies. This pattern cor-

responds to a flat security market line with a large intercept and motivates the extensive

literature on the beta anomaly, wherein low-beta stocks tend to earn higher risk-adjusted

returns than high-beta stocks. A common interpretation attributes this discrepancy to the

inadequacy of a single-factor model: the market factor alone cannot capture the cross-section

of expected returns, and additional factors are required. Yet, Di Tella, Hébert, Kurlat, and

Wang (2025) demonstrate that even when a rich set of cross-sectional risk factors is included,

the estimated zero-beta rate remains well above the level of Treasury yields. I confirm this

finding: across a wide range of models—from traditional Fama–French models with pre-

specified factors to more recent machine-learning models with latent factors—the estimated

zero-beta rate remains strikingly high. I refer to this persistent pattern as the zero-beta

rate puzzle, which continues to challenge our understanding of factor models and risk pricing

mechanisms in financial markets.

The connection between zero-beta rate, equity risk premium, and convenience yield deep-

ens the significance of the zero-beta rate puzzle. Safe asset yields, such as Treasury yields,

are typically lower than the frictionless risk-free rate due to a “convenience yield” that re-

flects their non-pecuniary benefits in providing liquidity, collateral, hedging, and regulatory

services (Bansal and Coleman, 1996; Krishnamurthy and Vissing-Jorgensen, 2012; Nagel,

2016; Acharya and Laarits, 2025, Cieslak, Li, and Pflueger, 2025; etc.). If the unobserved

risk-free rate implied by zero-beta estimation is indeed high, then the market risk premium

must be low and the convenience yield high. Conversely, a low risk-free rate implies a high

market risk premium and a small convenience yield. The empirical robustness of zero-beta

rate estimates across models appears to suggest a high risk-free rate (Di Tella et al., 2025).

This paper challenges the interpretation of the robustness of zero-beta rate estimates.

Rather than viewing the stability of zero-beta rate estimates across diverse models as evi-

dence of economic validity, I argue that such robustness reflects a common statistical problem:
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model misspecification. To demonstrate the relationship between model misspecification and

zero-beta rate estimation, I proceed in four steps.

First, I discuss the conceptual relationship among factor model misspecification, the

zero-beta rate, and the risk-free rate. To clarify terminology at the outset: the risk-free

rate is the expected return on an asset that delivers a certain payoff in every future state

of the world. It is a universal concept, not tied to any specific asset pricing model. The

zero-beta rate, by contrast, is defined within a particular factor model or, equivalently, with

respect to a given stochastic discount factor (SDF). It represents the expected return of any

portfolio orthogonal to the factor space. Under a correctly specified factor model—one that

perfectly prices all risky assets—all zero-beta portfolios share the same expected return, and

the zero-beta rate implied by that model is unique. However, it does not necessarily equal

the true risk-free rate. The reason lies in market incompleteness. When no risk-free asset is

traded, there exist infinitely many admissible stochastic discount factors—and thus infinitely

many factor models—that can all price the same set of risky returns. Each model implies

its own internally consistent “risk-free rate”. This idea can also be understood through

mean–variance analysis: any efficient portfolio on the mean–variance frontier (except the

global minimum-variance portfolio) defines an SDF, or equivalently a factor model, that

perfectly prices all risky assets. Each such model implies a unique, model-specific zero-beta

rate, which need not coincide with the true risk-free rate. In short, the risk-free rate is

fundamentally unidentified from risky returns alone (Cochrane, 2009). Hence, attempts to

infer the true risk-free rate from factor models are inherently limited—even if the model

appears to perfectly price all risky assets.

In practice, no empirical factor model perfectly prices the cross section of returns. When

a model fails to capture the full return structure, pricing errors generate multiple zero-beta

portfolios with distinct expected returns, making the zero-beta rate non-unique. This in-

sight builds on Roll (1980), who studies orthogonal portfolios in the context of the CAPM.

Among the infinitely many possible zero-beta portfolios, the empirical literature conven-

tionally selects a particular one—the unit-investment, minimum-variance zero-beta portfo-

lio—and interprets its expected return as the zero-beta rate. This convention originates

from Black (1972) and Black et al. (1972), where, under a perfectly specified factor model,

the minimum-variance zero-beta portfolio lies on the mean–variance frontier. However, when

the model is misspecified, this choice loses theoretical justification and introduces systematic

estimation bias. Specifically, when the factor model corresponds to an inefficient portfolio in

mean–variance space, greater inefficiency—manifested as higher variance for a given mean

or lower mean for a given variance—tends to push the estimated zero-beta rate upward. In

the limit, severe misspecification drives the estimate toward the mean return of the global
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minimum-variance (GMV, hereafter) portfolio. Intuitively, when the factors explain little or

nothing about expected returns, the zero-beta constraint effectively becomes irrelevant. The

estimation problem then collapses to minimizing variance alone, in which case the minimum-

variance zero-beta portfolio coincides with the GMV portfolio.

These analytical results reveal that the robustness of zero-beta rate estimates and their

proximity to the mean return of the GMV portfolio likely arise because most factor models

share similarly large degrees of misspecification. I use the term “model misspecification”

broadly, without imposing assumptions on its source—whether omitted factors, weak fac-

tors, genuine mispricing, or pure measurement errors. Any deviation from perfect pricing

constitutes misspecification. In mean–variance terms, this implies that the factor space fails

to span or intersect the efficient frontier. Hence, throughout the analysis, I treat portfolio

inefficiency and factor model misspecification as equivalent concepts.

Second, to quantify model misspecification empirically, I propose a general and economi-

cally grounded measure based on the maximum Sharpe ratio attainable by zero-investment,

zero-beta portfolios. Under a correctly specified factor model, such portfolios should yield

zero expected returns, resulting in a Sharpe ratio of zero. Any positive Sharpe ratio therefore

reflects systematic pricing errors that can be potentially exploited, implying that the greater

the Sharpe ratio of these portfolios, the greater the degree of model misspecification. This

measure offers several advantages over traditional diagnostics. First, it captures the economic

magnitude of mispricing by constructing optimal investment strategies that directly exploit

the pricing errors implied by a model. In contrast, regression-based R2 statistics may fail to

reflect economic misspecification because they aggregate unweighted squared pricing errors.

Second, constructing a portfolio and estimating its Sharpe ratio is computationally more

efficient than estimating asset-level pricing errors (alphas) through regressions as required

by the Gibbons, Ross, and Shanken (1989) (GRS) statistic. Finally, computing the Sharpe

ratio of a zero-investment portfolio does not require knowledge of the true risk-free rate,

providing a tractable and robust way of evaluating misspecification even when the zero-beta

rate itself is unidentified.

Empirically, I examine a broad range of factor models—Fama–French (FF), principal

component analysis (PCA), instrumented PCA (IPCA; Kelly, Pruitt, and Su, 2019), and

conditional autoencoder (AE; Gu, Kelly, and Xiu, 2021) models. Across all specifications, the

evidence reveals substantial misspecification: the maximum Sharpe ratios of zero-investment,

zero-beta portfolios are economically large, exceeding 3 in-sample and 1 out-of-sample on an

annualized basis. This implies that no major factor model is close to achieving mean–variance

efficiency required for a unique and unbiased zero-beta rate. Moreover, the similar Sharpe

ratios across models suggest comparable degrees of misspecification—helping explain why
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all models tend to yield similar, biased zero-beta rates close to the GMV mean return.

Thrid, to demonstrate how estimated zero-beta rates align with the mean return of the

GMV portfolio, I examine two distinct universes of test assets that differ in their GMV

mean returns. I find that the estimated zero-beta rates are systematically higher in the asset

universe with a higher GMV mean return. Moreover, these estimates remain remarkably

stable across different model specifications and lie close to the GMV mean returns within

their respective asset groups. This pattern indicates that the estimated zero-beta rates

primarily reflect the mean return of the GMV portfolio rather than the true risk-free rate,

providing empirical support for my analytical result that substantial model misspecification

biases zero-beta rate estimates toward the GMV mean return.

Fourth, I use simulation analysis to quantify the magnitude of this bias and demonstrate

that the observed empirical patterns can arise purely from model misspecification. The

first simulation constructs returns from a fully specified “true” twelve-factor model encom-

passing standard sources of systematic risk—market, size, value, profitability, investment,

momentum, mispricing, volatility, and liquidity factors. In this setting, the true SDF and

risk-free rate are known. I then deliberately introduce misspecification by omitting one or

more factors from the estimated model and re-estimating the zero-beta rate using standard

procedures. The results show a strong, monotonic relationship: as the number of omitted

factors increases, the estimated zero-beta rate rises and converges towards the GMV mean

return in the simulated world. This indicates that empirically observed biases can be fully

explained by factor model misspecification alone, even when the true risk-free rate is low.

The previous simulation exercise only generates model misspecification from missing fac-

tors. To stay agnostic about the sources of misspecification, the second simulation ab-

stracts from specific factor structures and instead directly calibrates parameters of the

mean–variance frontier. Assuming a true annual risk-free rate of 3%, I simulate many in-

efficient portfolios corresponding to misspecified models. For each simulated portfolio, I

compute both the implied zero-beta rate and the maximum Sharpe ratio of zero-investment,

zero-beta portfolios. The results confirm a clear pattern: as inefficiency increases, the esti-

mated zero-beta rate converges toward the mean return of the GMV portfolio. When mis-

specification is severe (Sharpe ratio around 1.1), the probability that the estimated zero-beta

rate exceeds 8% is approximately 80%. Hence, the empirical magnitude of the zero-beta rate

puzzle—several percentage points above Treasury yields—can naturally arise from plausible

degrees of model misspecification.

These simulations confirm that greater model misspecification leads to higher estimated

zero-beta rates, even when the true risk-free rate is low, hence transforming the zero-beta

rate puzzle from an empirical anomaly into a measurable outcome of model misspecification.
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Equity Risk Premium Puzzle and Risk-Free Rate. The preceding results suggest

that high estimated zero-beta rates can emerge purely from model misspecification, even

when the true risk-free rate is low. A natural complementary question is whether a genuinely

high risk-free rate would be consistent with equilibrium asset pricing. Intuitively, a higher

risk-free rate does not alleviate the challenge of explaining equity returns. As the risk-free

rate rises, investors would require even higher compensation to hold risky assets in order

to maintain equilibrium consistency, implying a larger risk premium on the true tangency

portfolio. In this sense, a high risk-free rate amplifies the equity risk premium puzzle, rather

than resolving it, thereby creating greater tension with structural models in macro-finance.

Literature and Contributions. This paper contributes directly to the empirical liter-

ature on zero-beta rate estimation. Fama and MacBeth (1973), Gibbons (1982), Giglio and

Xiu (2021), among others, estimate the zero-beta rate as the intercept from cross-sectional

regressions, while Long (1971), Black (1972), and Black et al. (1972) solve for the minimum-

variance market-neutral portfolio weights and compute its mean return. Di Tella et al. (2025)

extend this framework by modeling the zero-beta rate as a time-varying function of macroe-

conomic predictors. Despite methodological differences, all find robustly high estimated

zero-beta rates across models—a phenomenon I reinterpret as evidence of misspecification

rather than as an equilibrium property of financial markets.

The paper’s key contribution is to reconceptualize the zero-beta rate puzzle as an iden-

tification failure stemming from model misspecification. I provide theoretical, empirical,

and simulation-based evidence linking model misspecification to zero-beta rate estimates.

Specificallym, I argue that the empirical robustness of zero-beta rate estimates arises jointly

from pervasive model misspecification and the reliance on the minimum-variance zero-beta

portfolio estimator. The results caution against the use of factor-model-implied zero-beta

rates to infer the magnitude of the risk premium or the convenience yield, as these estimates

do not provide information about the true risk-free rate. In addition, the paper proposes

an economically grounded measure of model misspecification based on the maximum Sharpe

ratio of zero-investment, zero-beta portfolios, which complements existing statistical metrics

by directly connecting model fit to exploitable investment opportunities.

This paper is closely related to the huge factor model literature (Ross (1976); Huber-

man (1982); Chamberlain and Rothschild (1983); Ingersoll Jr (1984); Connor and Korajczyk

(1986); Fama and French (1993); Carhart (1997); Hou et al. (2015); Stambaugh and Yuan

(2017); Fama and French (2018); Kelly et al. (2019); Gu et al. (2021); etc.). I also ex-

plore the investment opportunities from investing in beta-neutral/“arbitrage” portfolios,

studied in Kim et al. (2021), Lopez-Lira and Roussanov (2020), and others. The fact that

prominent factor models are strongly misspecified implies economically meaningful and im-
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plementable investment opportunities to exploit model mispricing. In particular, I find that

zero-investment, zero-beta strategies delivers superior investment performances, even after

accounting for either proportional or price-impact transaction costs. For small- and medium-

sized investors, pursuing such strategies are shown to consistently outperform the market,

producing impressive alphas against standard risk factors (above 0.4% on a monthly basis).

Moreover, the results reveal that simpler, parsimonious models—such as single-factor imple-

mentations—tend to generate the strongest feasible profits, with annualized Sharpe ratios

above 0.75. Although such parsimonious models fall short of capturing the full risk structure

of returns, they can yield highly profitable and practically implementable factor-neutral in-

vestment strategies. Furthermore, these portfolios are well diversified and free from extreme

positions in individual stocks, and their leverage ratios range from 1.84 to 4.10, which are

well within reasonable and implementable levels.

Paper Structure. The remainder of the paper is organized as follows. Section 2 de-

velops the theoretical link between model misspecification and zero-beta rate estimation.

Section 3 presents the data, model specifications, and empirical analysis quantifying the

misspecification channel. Section 4 explores the economic tension between the equity risk

premium puzzle and the risk-free rate. Section 5 evaluates the investment performance of

zero-beta strategies after accounting for transaction costs. Section 6 concludes.

2. Zero-Beta Rate and Factor Model Misspecification

First and foremost, it is essential to draw a clear conceptual distinction between risk-

free rate and zero-beta rate. The risk-free rate is the expected return on an asset with no

uncertainty about its payoffs across all future states of the world. It is a universal notion, not

dependent on any particular asset pricing model. In contrast, the zero-beta rate is defined

within the context of a specific factor model or, equivalently, with respect to a given stochastic

discount factor (SDF). It represents the expected return on any portfolio that is orthogonal

to the SDF or, equivalently, carries zero exposure to the model’s factors. In empirical asset

pricing, researchers often assume that a risk-free rate exists and that it coincides with the

model-implied zero-beta rate. However, in frameworks where a risk-free asset is absent—such

as in Black (1972); Black et al. (1972)—Cochrane (2009) emphasizes that the risk-free rate

is fundamentally not identified from risky returns alone. In an incomplete market, where

no risk-free asset is traded, there exist infinitely many admissible SDFs—and, equivalently,

infinitely many factor models—that can all perfectly price the same set of risky returns. Each

SDF or factor model implies its own zero-beta rate, which can be viewed as an internally

consistent, model-specific “risk-free rate”. This reasoning implies that estimating the true
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risk-free rate from risky returns using factor models is fundamentally infeasible. Nevertheless,

the literature continues to employ factor models to estimate zero-beta rates, and a striking

empirical fact has emerged: estimated zero-beta rates remain persistently high across a wide

range of risk factors (Di Tella et al., 2025) and model specifications. I refer to this empirical

phenomenon as the zero-beta rate puzzle, which this paper seeks to resolve.

This section examines the impact of factor model misspecification on the estimation

of the zero-beta rate. Section 2.1 revisits existing estimation approaches and shows that

the zero-beta rate is typically computed as the expected return of the unit-investment,

minimum-variance zero-beta portfolio. Section 2.2 demonstrates that when a factor model

is misspecified, the expected returns of zero-beta portfolios can take infinitely many values,

implying that the zero-beta rate is not uniquely identified. In such cases, the conventional

estimator based on the minimum-variance zero-beta portfolio becomes arbitrary and lacks

clear economic interpretation. Section 2.3 further investigates the observed robustness of

zero-beta rate estimates and shows that large model misspecification systematically pushes

the estimated zero-beta rate toward the mean return of the global minimum-variance (GMV,

hereafter) portfolio. Thus, the empirical robustness of zero-beta rate estimates may arise

jointly from pervasive model misspecification and the reliance on the minimum-variance

zero-beta portfolio estimator. Finally, Section 2.4 introduces a general, investment-based

measure of factor model misspecification that will be used in empirical assessments.

2.1. Zero-Beta Rate Estimation

Suppose there are N assets in the market, Rt+1 ∈ RN , indexed by i = 1, 2, ..., N . Let

µ denote the expected return vector and Σ the variance-covariance matrix. A factor model

posits that an asset return Ri,t+1 follows a K-factor structure and the expected return in

excess of the zero-beta rate is determined by risk loadings and factor risk premia:

Ri,t+1 = αi,t + β′
i,tft+1 + εi,t+1 (1)

µi,t − rz,t = ai,t + β′
i,tλt (2)

Equation (1) is the statistical assumption of realized asset returns where αi,t is the inter-

cept term, βi,t is the K × 1 vector of risk loadings, and ft+1 is the K × 1 vector of factors.

In the theoretical expected returns model of equation (2), ai,t represents the pricing errors

which should be zero if the factor model is perfect, λt is the K × 1 vector of factor risk

premia, and rz,t denotes the zero-beta rate—expected return for not taking any (systematic)

risk. This is a general factor model framework incorporating a wide range of model specifica-

tions. The conventional Fama-French type of models assume constant betas and pre-specify
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known risk factors. The Arbitrage Pricing Theory (APT) models retain the constant betas

but rely on principal component analysis (PCA) to extract statistical factors. With the

recent development of machine learning techniques, advanced conditional models are able to

formulate betas as functions of asset characteristics.

This paper examines the zero-beta rate rz,t implied by a factor model, which is often

proxied in empirical studies using the U.S. Treasury bill yield, since Treasury bills are re-

garded as risk-free assets. However, because Treasury securities offer a convenience yield,

their yields tend to be lower than the true frictionless risk-free rate. The literature has

proposed several methods to estimate the zero-beta rate implied by a given factor model.

In particular, I revisit two widely used approaches for estimating the zero-beta rate: the

portfolio-based approach and the regression-based approach.1

2.1.1. Portfolio Approach

The portfolio approach estimates the zero-beta rate in a given factor model by iden-

tifying the unit-investment, minimum-variance portfolio that has zero exposure to factor

risks, and then taking its expected return as the zero-beta rate. This approach originates

from Long (1971), Black (1972), and Morgan (1975), who explicitly solve for the minimum-

variance portfolio orthogonal to the market. Formally, they solve the optimization problem:

min
ω

ω′Σω subject to ω′ι = 1 and ω′Σωm = 0 where ι is a vector of ones and ωm denotes

the market portfolio weights. The zero-covariance constraint ω′Σωm = 0 ensures that the

portfolio is market-neutral. The analytical solution is ωz,mv = (1− κι′ωm)ωgmv + κωm

where ωgmv = Σ−1ι/
(
ι′Σ−1ι

)
is the global minimum-variance portfolio weights, and κ =(

ω′
gmvΣωm

)
/
(
(ι′ωm)ω

′
gmvΣωm − ω′

mΣωm

)
. The sample average return on this minimum-

variance, market-neutral portfolio provides an estimate of the zero-beta rate, rz = E[ω′
zRt+1].

Extending this framework from the CAPM to multifactor models introduces additional

challenges, as the multifactor-mimicking portfolio weights are often difficult to obtain, par-

ticularly when factors are latent. Di Tella et al. (2025) generalize the portfolio approach

by directly imposing zero-beta constraints for all factors in the portfolio construction stage:

min
ω

ω′Σω subject to ω′ι = 1 and ω′β = 0K where β denotes the N × K matrix of es-

timated betas2 and 0K denotes a K × 1 vector of zeros. The analytical solution for the

minimum-variance zero-beta portfolio weights is given by:

1Appendix C.1 discusses another category of zero-beta rate estimation—the test-optimization ap-
proach—which determines the value of the zero-beta rate that makes a given factor model as close as
possible to being correctly specified (see Kandel, 1984, 1986; Shanken, 1986; Velu and Zhou, 1999; Beaulieu
et al., 2013, 2023, 2025; Ferson et al., 2025). This approach, however, is not the main focus of the paper.

2Betas are estimated differently across models. In Fama–French-type models, betas are obtained from
time-series regressions, whereas in machine-learning-based models, they are often estimated as linear or
nonlinear functions of firm characteristics.

8



ωz,mv = Σ−1
[
ι β

]([ ι′
β′

]
Σ−1

[
ι β

])−1 [
1

0K

]
(3)

Rather than taking the sample mean of the realized zero-beta portfolio returns, Di Tella

et al. (2025) model the zero-beta rate as a linear function of macroeconomic predictors,

Yt. They project realized zero-beta portfolio returns onto these predictors to obtain the

conditional expected return: ω′
z,mvRt+1 = δ′Yt + ϵt+1. The fitted value δ′Yt thus provides

a time-varying estimate of the zero-beta rate. 3

2.1.2. Regression Approach

The regression approach estimates the zero-beta rate as the intercept in the cross-sectional

regression of expected returns on estimated betas:

E[Ri] = λ0 + λ′βi + ei (4)

where E[Ri] is the sample mean return of asset i, βi is the estimated K × 1 vector of risk

loadings, λ is the K×1 vector of factor risk premia, and λ0 is the intercept term, interpreted

as the zero-beta rate. The regression can be estimated using either ordinary least squares

(OLS) or generalized least squares (GLS). This approach is employed in classic studies such as

Black et al. (1972), Fama and MacBeth (1973), and Gibbons (1982) via the Fama–MacBeth

two-pass procedure, and in more recent work such as Giglio and Xiu (2021) through the

three-pass procedure. When GLS is used, the estimated intercept takes the following form::

λ̂0,GLS =
[
1 0K

]([ ι′
β′

]
Σ−1

[
ι β

])− [
ι′

β′

]
Σ−1E[R] = ω′

zE[R] (5)

where ωz denotes the minimum-variance zero-beta portfolio weights defined in equation (3),

and E[R] is the vector of sample mean returns. Thus, the GLS intercept is mathematically

identical to the sample mean return on the minimum-variance zero-beta portfolio. Similarly,

when OLS is used, the intercept corresponds to the sample mean return of a particular zero-

beta portfolio. In this sense, the regression approach is equivalent to the portfolio approach.

3A practical challenge arises because the zero-beta rate is needed to construct excess returns used in
estimating betas via time-series regressions. Since it is not known ex ante but depends on the estimated
betas through equation (3), estimation must proceed iteratively or within a GMM framework that jointly
determines the betas and the time-varying zero-beta rate.
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2.2. Uniqueness of Zero-Beta Rate

The previous discussion of estimation approaches has already alluded to the issue that the

zero-beta rate associated with a given factor model may not be uniquely identified. Among

the infinitely many zero-beta portfolios, empirical studies typically select the minimum-

variance one. This convention follows the classic Black-CAPM (Black, 1972; Black et al.,

1972), in which the intercept of the security market line corresponds to the expected return

on the minimum-variance market-neutral portfolio when either no risk-free asset exists or

borrowing at the risk-free rate is constrained. In this section, however, I re-examine this

portfolio choice and show that it is arbitrary and lacks clear economic interpretation.

Roll (1980) discusses the zero-beta portfolios (orthogonal portfolios) under CAPM. It

proves that the zero-beta rate can take all values if the market portfolio is not mean-variance

efficient. This argument is generally correct for any multi-factor model. As an extension

to Roll (1980), I emphasize the following Proposition about the uniqueness of the zero-beta

rate for any factor model (The complete proof is provided in Appendix B.1).

Proposition 1. There exists an infinite number of unit-investment, zero-beta portfolios ob-

tained within a factor model.

(i) If the factor model is correctly specified, all the zero-beta portfolios have the same

expected returns and the zero-beta rate is uniquely identified.

(ii) If the factor model is misspecified, the zero-beta portfolios do not have equal expected

returns and the zero-beta rate is indeterminate.

The intuition can be developed from the vector form of equation (2), Et[Rt+1] − rz,tι =

at + βtλt where Rt+1 is the N × 1 vector of returns, ιN is a N × 1 vector of ones, at

is the N × 1 vector of pricing errors, and βt is the N × K matrix of betas. Consider

an unit-investment, zero-beta portfolio with a N × 1 vector of weights ωz. By definition,

ω′
zβt = 0K and ω′

zιN = 1. Therefore, the zero-beta portfolio should have an expected return:

Et[Rz,t+1] = ω′
zEt[Rt+1] = rz,t · ω′

zιN + ω′
zat + ω′

zβtλt = rz,t + ω′
zat. A correctly specified

factor model with zero pricing errors (ai,t = 0) should recover a unique zero-beta rate rz,t. By

contrast, a misspecified model with non-zero pricing errors fails to disentangle the zero-beta

rate from pricing errors. Different combinations of pricing errors lead to different expected

returns of zero-beta portfolios, and thus indeterminate zero-beta rates.

I further examine the above proposition within the standard textbook mean-variance

framework, following Roll (1980). First of all, asset pricing theory suggests that a correctly

specified factor model corresponds to a mean-variance efficient portfolio on the efficient

frontier, denoted by p∗, whereas a misspecified factor model corresponds to an inefficient
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Figure. 1. Unit-Investment Zero-Beta Portfolios

Notes: This figure shows the unit-investment zero-beta portfolios (orthogonal portfolios) for an
efficient portfolio p∗ and an inefficient portfolio p in the mean-standard deviation space. The
black hyperbola represents the mean-variance frontier. The blue horizontal solid line represents
the zero-beta portfolios with respect to p∗, with zp∗ denoting the corresponding
minimum-variance portfolio. The gray shaded region depicts the zero-beta portfolios with respect
to p, and the black dashed hyperbola shows their zero-beta frontier, where zp is the corresponding
minimum-variance portfolio. For illustration, when p has the same expected return as p∗, the
zero-beta frontier with respect to p is tangent to the mean-variance frontier at zp∗ .

portfolio p. Figure 1 shows the unit-investment zero-beta portfolios (orthogonal portfolios)

for an efficient portfolio p∗ and an inefficient portfolio p in the mean-standard deviation space.

The blue horizontal solid line represents the zero-beta portfolios with respect to p∗, with zp∗

denoting the corresponding minimum-variance portfolio. The gray shaded region depicts the

zero-beta portfolios with respect to p, and the black dashed hyperbola shows their zero-beta

frontier4, where zp is the corresponding minimum-variance portfolio. For illustration, when

p has the same mean as p∗, the zero-beta frontier with respect to p is tangent to the mean-

variance frontier at zp∗ . Proposition 1 (i) shows that the zero-beta portfolios with respect to

p∗ share the same expected return—the zero-beta rate—represented by the blue horizontal

solid line. In this case, estimating the zero-beta rate using any zero-beta portfolio yields the

same result, and the expected return of these portfolios, rz∗ , recovers the unique zero-beta

rate. By contrast, Proposition 1 (ii) shows that the zero-beta portfolios with respect to p are

located inside the shaded area. Hence, the zero-beta rate becomes indeterminate, admitting

4The zero-beta frontier with respect to portfolio p is defined as the set of zero-beta portfolios for portfolio
p that minimize variance for a given level of mean return.
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infinitely many possible values. In this case, the minimum-variance zero-beta portfolio is no

longer on the mean-variance frontier and using it to estimate the zero-beta rate therefore

produces an arbitrary expected return, rz, that does not have a clear economic interpretation.

Any mean–variance efficient portfolio p∗ (other than the GMV portfolio) defines a factor

model, a stochastic discount factor (SDF), or a beta-pricing relation that perfectly prices

all risky assets. Each such model implies a unique, model-specific zero-beta rate r∗z , which

does not necessarily coincide with the true risk-free rate. This mean–variance perspective

reinforces the earlier statement that the risk-free rate is fundamentally unidentified from risky

returns alone. Consequently, attempts to infer the true risk-free rate from factor models are

intrinsically limited, even when a model appears to perfectly price all risky assets.

I use the term model misspecification in a broad sense, remaining agnostic about its spe-

cific sources. Any deviation of a factor model from perfectly pricing all risky assets consti-

tutes model misspecification. In the mean–standard-deviation space, model misspecification

implies that the factors do not span or intersect the mean–variance frontier. Accordingly, I

treat portfolio inefficiency and factor model misspecification as equivalent concepts through-

out the analysis.

In summary, a key challenge in zero-beta rate estimation is that existing methods, which

are based on the minimum-variance zero-beta portfolio, require a correctly specified factor

model to ensure identification of a unique zero-beta rate. Under model misspecification,

however, the zero-beta rate ceases to be unique or identifiable, as it becomes contaminated

by pricing errors and therefore loses its economic interpretability.5 In the next section, I

further examine how model misspecification gives rise to estimation bias in the inferred

zero-beta rate.

2.3. Zero-Beta Rate and Model Misspecification

When the factor model is misspecified, the zero-beta rate ceases to be uniquely iden-

tified. As a result, estimates based on the unit-investment, minimum-variance zero-beta

portfolio lose their economic meaning. Importantly, these estimates are not merely random

values—model misspecification itself can systematically shape them, offering a potential ex-

planation for the empirical robustness of zero-beta rate estimates observed across models. To

formalize this idea, I analyze model misspecification through the lens of portfolio inefficiency

in the mean–standard deviation space. Proposition 2 formalizes the relationship between

portfolio inefficiency and the estimated zero-beta rate (The complete proof is provided in

Appendix B.2.)

5A clean identification strategy for the zero-beta rate under inevitable model misspecification may require
additional structural restrictions on the pricing errors, which I leave for future research.
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Proposition 2. Suppose a factor model corresponds to a portfolio p with mean and variance

rp and σp. The true unobserved Tangency portfolio is denoted as T ∗, which corresponds

to the true unobserved risk-free rate rf . Denote the mean and standard deviation of the

global minimum-variance portfolio (GMV) as rGMV and σGMV . Using the unit-investment,

minimum-variance zero-beta portfolio with respect to portfolio p, the zero-beta rate is:

rz = rGMV − σ2
GMV

rp − rGMV

σ2
p − σ2

GMV

(6)

(i) The zero-beta rate depends on the location of portfolio p:

- rz < rf if and only if (rp − rz)/σ
2
p > (rT ∗ − rf )/σ

2
T ∗.

- rf ≤ rz ≤ rGMV if and only if (rp − rz)/σ
2
p ≤ (rT ∗ − rf )/σ

2
T ∗ and rp ≥ rGMV .

- rz > rGMV if and only if rp < rGMV .

(ii) If the inefficient portfolio p lies above the GMV portfolio return (rp > rGMV ), then the

zero-beta rate increases with portfolio inefficiency—it rises with higher volatility (hold-

ing mean return constant) and with lower mean return (holding volatility constant):

drz
dσp

> 0,
drz
drp

< 0 (7)

Equation (6) provides the formula for the expected return (rz) of a portfolio that mini-

mizes variance subject to the constraint of having zero beta (zero covariance) with respect

to a specific factor model portfolio p. This relationship implies that the zero-beta rate

equals the return on the global minimum-variance (GMV) portfolio (rGMV ) plus a “tilt”

term—the precise adjustment required to satisfy the zero-beta constraint. Based on this for-

mula, Proposition 2 (i) shows that the space of inefficient portfolios can be divided into three

regions, as illustrated in Figure 2. If portfolio p lies in region I, the estimated zero-beta rate

is lower than the true (unobserved) risk-free rate (rz < rf ). If p lies below the GMV port-

folio in region III, then the zero-beta rate exceeds the GMV portfolio return (rz > rGMV ).

When p lies in region II, the zero-beta rate is higher than the true risk-free rate but remains

below the GMV portfolio return (rf < rz < rGMV ). Therefore, the level of zero-beta rate rz

depends on the location of portfolio p.

Empirically, regions I and II are the relevant cases to consider, since the factor portfolio p

typically has a higher expected return than the GMV portfolio (rp > rGMV ) due to a positive

risk–return trade-off.6 This condition effectively rules out region III. Focusing on regions I

6If a factor portfolio had a lower expected return than the GMV portfolio, it would imply that investors
are being rewarded less for taking on more risk.
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Figure. 2. Zero-Beta Rate Contour Curves and Portfolio Inefficiency

Notes: This figure illustrates the estimated zero-beta rate contour curves in the mean-standard
deviation diagram. The black hyperbola represents the mean–variance frontier. Portfolios located
on the blue solid contour curve imply a zero-beta rate equal to the true risk-free rate. This curve
extends leftward and intersects the vertical axis at rf . Portfolios lying on the same blue dashed
contour curve imply an identical zero-beta rate, corresponding to the intercept on the vertical
axis if the curve were extended leftward (not shown). The space of inefficient portfolios can be
divided into three regions. If portfolio p lies in region I, then rz < rf ; if it lies in region II, then
rf < rz < rGMV ; and if it lies in region III, then rz > rGMV .

and II, the estimated zero-beta rate rz may be either downward biased (region I) or upward

biased (region II) relative to the unobserved risk-free rate rf . The estimate rz equals to rf

only when the factor model lies on the boundary between regions I and II, represented by

the blue contour curve in Figure 2. This contour extends leftward and intersects the vertical

axis at rf . Overall, this analysis reinforces the earlier argument that zero-beta rate estimates

do not yield definitive information about the true risk-free rate.

However, predictable patterns of the estimated zero-beta rate can be inferred from port-

folio inefficiency. Figure 2 plots other zero-beta rate contour curves within region II. Port-

folios lying along the same blue dashed curve imply an identical estimated zero-beta rate,

which corresponds to the intercept on the vertical axis if the curve were extended leftward

(not shown).7 The estimated zero-beta rate increases as we move across contour curves

away from the mean–variance frontier. This pattern suggests that as the inefficient port-

7Figure C.1 illustrates the estimated zero-beta rate contour curves in the mean–variance diagram, where
the contours are linear.
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folio p deviates further from the true tangency portfolio T ∗, the estimated zero-beta rate

rises from rf toward rGMV . Proposition 2 (ii) formalizes this result, showing that portfolio

inefficiency—i.e., factor model misspecification—inflates the estimation of zero-beta rate.

Assuming the inefficient portfolio p lies above the GMV portfolio, the estimated zero-beta

rate increases monotonically with the degree of inefficiency along both risk and return di-

mensions. Holding the mean return constant, portfolios with higher volatility imply higher

estimated zero-beta rates (drz/dσp > 0). Conversely, holding volatility constant, portfolios

with lower mean returns imply higher estimated zero-beta rates (drz/drp < 0). Figure C.2

and C.3 visualize the relationship between portfolio inefficiency and the level of the esti-

mated zero-beta rate in the mean–standard deviation diagram. In an extreme case with

severe model misspecification ( rp−rGMV

σ2
p−σ2

GMV
−→ 0), the estimated zero-beta rate converges to

the mean return of the GMV portfolio (rz −→ rGMV ) according to equation (6).

In summary, Proposition 2 provides a comprehensive characterization of the relationship

between factor model misspecification and the estimated zero-beta rate. The estimated rate

depends on the location of the factor model portfolio in the mean–variance space. Without

additional information, the zero-beta rate may coincide with, fall below, or exceed the true

risk-free rate. In practice, however, model misspecification tends to inflate the estimated

zero-beta rate, pushing it toward the mean return of the GMV portfolio. An empirical

evaluation of this implication will be presented in Section 3.

2.4. Measure of Model Misspecification

The preceding analysis shows that model misspecification can account for the high es-

timates of zero-beta rates. An important but often overlooked step in the zero-beta-rate

literature is to quantify the degree of model misspecification, as doing so is essential for eval-

uating the potential magnitude of the puzzle. When a factor model closely approximates

an admissible stochastic discount factor (SDF), it produces a unique zero-beta rate—though

not necessarily the true risk-free rate. In contrast, when the model is substantially mis-

specified, its estimated zero-beta rate tends to coincide with the mean return of the global

minimum-variance (GMV) portfolio. Thus, while earlier studies often report that zero-beta

rate estimates appear robust across different factor models, this apparent robustness may

simply reflect the fact that those models are misspecified to a similar degree.

Proposition 3 introduces a measure of factor model misspecification grounded in the

behavior of zero-beta portfolios. The idea builds on Proposition 1, which establishes that

a correctly specified factor model should imply a unique zero-beta rate. Hence, one can

evaluate model misspecification by examining how much the returns on zero-beta portfolios

deviate from featuring a unique rate. (The complete proof is provided in Appendix B.3.)
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Figure. 3. Measuring Model Misspecification

(a) Unit-Investment (b) Zero-Investment

Notes: This figure shows the measure of factor model misspecification in both a unit-investment
setting (left panel) and a zero-investment setting (right panel). Among unit-investment portfolios
in Panel (a), the red solid line represents the asymptote of the zero-beta frontier (black dashed
hyperbola) with respect to an inefficient portfolio p. Among zero-investment portfolios in Panel
(b), the red solid line is the zero-beta frontier with respect to an inefficient portfolio p.

Proposition 3. The slope of the asymptote for the unit-investment, zero-beta frontier

equals the slope of the zero-investment, zero-beta frontier. These slopes correspond to the

maximum Sharpe ratio attainable by zero-investment, zero-beta portfolios and thereby provide

a measure of model misspecification.

Figure 3 illustrates this misspecification measure using mean–standard deviation dia-

grams. The left panel depicts the zero-beta frontier in a unit-investment setting, while the

right panel presents its counterpart in a zero-investment setting. In both panels, portfolio p∗
denotes the true tangency portfolio, whereas an inefficient portfolio p represents one implied

by a misspecified factor model. In Panel (a), the red solid line shows the asymptote of the

zero-beta frontier (the black dashed hyperbola) corresponding to portfolio p. For a correctly

specified model, the zero-beta set is a horizontal line (blue solid line) with a unique zero-beta

rate. Thus, the slope of the asymptote measures how much zero-beta returns diverge from

featuring a unique rate. In Panel (b), the red solid line represents the zero-beta frontier

corresponding to portfolio p. For a correctly specified model, the zero-beta set coincides

with the horizontal axis (blue solid line), implying zero expected returns. In contrast, for

a misspecified model—represented by the inefficient portfolio p—the shaded area illustrates

all possible zero-investment, zero-beta portfolios. The slope of the zero-beta frontier thus

corresponds to the maximum Sharpe ratio attainable by such portfolios. This slope can be
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expressed as:

S2
z = SR2(p∗)− SR2(p) (8)

where Sz denotes the slope of the zero-investment, zero-beta frontier. Equation (8) shows

that the maximum Sharpe ratio attainable by zero-investment, zero-beta portfolios equals the

difference in Sharpe ratios between the true tangency portfolio and the model-implied factor

portfolio. This “Sharpe ratio spread”, akin to the GRS statistic8, provides a economically

interpretable measure of model misspecification.

Proposition 3 establishes that the slope of the asymptote in the unit-investment setting

and the slope of the zero-beta frontier in the zero-investment setting are equivalent measures

of factor model misspecification. This is because any unit-investment, zero-beta portfolio

can be orthogonally decomposed into a unit-investment, zero-beta portfolio and the unit-

investment, minimum-variance zero-beta portfolio. For empirical implementation, I focus on

the zero-investment setting, which is more tractable and easier to compute. An additional

advantage of this framework is that the risk-free rate cancels out in zero-investment portfolios,

allowing model misspecification to be evaluated without knowing the true risk-free rate or

estimating a zero-beta rate. Specifically, I construct the optimal zero-investment, zero-

beta portfolio with no exposure to any systematic risk factors of the model and evaluate its

investment performance. This is achieved by solving the following constrained mean–variance

optimization problem:

max
ω

ω′µ− γ

2
ω′Σω

s.t. ω′ι = 0, ω′β = 0K

(9)

where γ is the risk aversion coefficient. The analytical solution for the optimal zero-investment,

zero-beta portfolio weights is:

ω∗
z =

1

γ
Σ−1

[
I−Π

(
Π′Σ−1Π

)−1
Π′Σ−1

]
µ (10)

where Π = [ι, β]. Recall that the unconstrained optimal portfolio weights are given by

ω∗ = 1
γ
Σ−1µ. Comparing the two, equation (10) can be interpreted as the optimal portfolio

based on the projected mean return PΠµ, where PΠ ≡
[
I−Π

(
Π′Σ−1Π

)−1
Π′Σ−1

]
is a

generalized projection matrix with weights Σ−1. This matrix projects the mean return

vector onto the subspace orthogonal to Π, so that α̃ ≡ PΠµ can be interpreted as pricing

8The GRS statistics: J ∝ SR2(R,F)−SR2(F)
1+SR2(F) where R and F denotes the test asset returns and factor

returns. It represents the gain in Sharpe ratio from adding test assets to the factor set.
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errors (alphas) and ω∗
z represents the optimal portfolio of alphas that is beta neutral.

The maximum Sharpe ratio attainable by zero-investment, zero-beta portfolios is:

Sz =
√

α̃′Σ−1α̃ (11)

Equation (11) indicates that Sz captures the “arbitrage”
9 investment opportunities that can

be exploited under a given factor model without taking on factor risk. Intuitively, the higher

the attainable Sharpe ratio from this zero-beta (factor-neutral) portfolio, the farther the

model is from correctly pricing all assets—implying greater model misspecification.

This misspecification measure differs from traditional ones in several important ways.

Although Sz is conceptually related to the GRS statistic via equations (8) and (11), the

empirical implementation is distinct. Rather than estimating alphas from time-series re-

gressions to compute a test statistic, I directly construct zero-investment, zero-beta port-

folios and evaluate the investment opportunities arising from model-implied pricing errors

(alphas). In addition, model misspecification can be assessed using the Hansen and Jagan-

nathan (1997) distance (HJD)10, which measures the distance between a proposed SDF and

the set of all admissible SDFs that correctly price test assets. While HJD is grounded in

the SDF framework, Sz provides a complementary investment-based perspective, summa-

rizing in a single alpha portfolio what the factor model fails to capture. Finally, model

R2 values—often used informally to assess statistical model fit—may not accurately reflect

economic misspecification. For example, existing factor returns can explain virtually all of

the common time-series variations in stock returns (high time-series R2 values), but they

may fail to explain expected returns in the cross-section (Lopez-Lira and Roussanov, 2020).

Cross-sectional R2 values vary across models and they rely on unweighted squared pricing

errors. In contrast, Sz weights pricing errors by the inverse covariance matrix, emphasizing

economically meaningful directions of mispricing. Consequently, a factor model may exhibit

small average pricing errors and high cross-sectional R2, yet still generate large Sharpe ratios

from zero-beta portfolios, signaling substantial economic deviations from perfect pricing.

9Similar to Kim et al. (2021), the notion of “arbitrage” is that portfolios are constructed to hedge out
the systematic risk.

10HJD = min
M

E[MR− 1]′W−1E[MR− 1] where M is the SDF, R is a matrix of asset returns, and W

is the weighting matrix.
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3. Empirical Assessment

3.1. Data

I obtain monthly individual stock returns and characteristics from the Global Factor Data

website organized by Jensen, Kelly, and Pedersen (2023) (JKP).11 My sample spans January

1960 to December 2024, covering 780 months (65 years). In total, there are 3,658,843 stock-

month observations for 28,828 unique stocks, averaging 4,691 stocks per month. For each

characteristic, I fill missing values with the cross-sectional median by 2-digit SIC industry

each month. After this step, I retain 136 characteristics with complete coverage across the

full sample (see Appendix A.1 for the full list). All characteristics are lagged one month.

JKP update characteristics using the most recent accounting data four months after the

fiscal period ends, ensuring that lagged characteristics are in the public information set and

avoiding look-ahead bias.

I use characteristic-sorted portfolios in model evaluation and zero-beta rate estimation.

Following Jensen et al. (2023), I construct portfolios and factors for each characteristic and

retain the two corner portfolios (top and bottom terciles), since much of the relevant infor-

mation resides in the extremes (Lettau and Pelger, 2020). I also include the middle tercile

portfolio sorted by size so that the market return is spanned by the testing portfolios. This

yields a total of 136 × 2 + 1 = 273 univariate-sorted portfolios. Each factor is constructed

as the return spread between portfolios in the top and bottom terciles of a given character-

istic. The factor’s sign is adjusted, if necessary, to ensure that its average return over the

sample period is positive. The timing of my portfolio formation differs a bit from standard

practice: while Fama–French form portfolios annually in June and JKP form them monthly,

I construct portfolios each December, aligned with the rolling out-of-sample periods in my

following analysis. During this procedure, I store portfolio weights on individual stocks. My

empirical results are robust to the portfolio formation method.

In conditional factor models (described in Section 3.2), lagged characteristics also serve as

determinants of model parameters. Following Gu et al. (2020), Gu et al. (2021), and others,

I cross-sectionally rank-normalize all characteristics into the (−1, 1) interval each month.

Since stock characteristics often display high skewness and kurtosis, the rank transformation

reduces sensitivity to outliers.

11I thank the authors for making the data easily accessible (a WRDS account with access to CRSP and
Compustat is required).
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3.2. Candidate Factor Models

I study a wide range of factor models in this paper. For each model, I evaluate specifica-

tions with 1, 3, 6, and 9 factors. A general representation of a factor model is:

ri,t+1 = α(zi,t) + β(zi,t)
′ft+1 + εi,t+1 (12)

where ft+1 is a K-dimensional vector of factors, α(zi,t) and β(zi,t) denote the intercept and

risk loadings, potentially functions of the 136 stock characteristics.

First, I consider unconditional linear models with pre-specified factors, the most widely

used class of models. These models assume that a small set of observable, economically

motivated factors explain stock returns, with constant intercepts and loadings: α(zi,t) = αi

and β(zi,t) = β. Prominent examples include Fama and French (1993), Carhart (1997), Hou

et al. (2015), Stambaugh and Yuan (2017), and Fama and French (2018). In the 1-factor

case, I include only the market factor. In the 3-factor case, I include market, size, and

value factors. In the 6-factor case, I include market, size, value, profitability, investment,

and momentum factors. In the 9-factor case, I add the betting-against-beta (BAB) factor

(Frazzini and Pedersen, 2014) and two mispricing factors (Stambaugh and Yuan, 2017) to

the 6-factor specification.12 I refer to these models collectively as “FF”.

Second, I use unconditional linear models with PCA factors, rooted in the Arbitrage

Pricing Theory (APT) (Ross, 1976; Huberman, 1982; Chamberlain and Rothschild, 1983;

Ingersoll Jr, 1984; Connor and Korajczyk, 1986, among others). Unlike the CAPM or the

Intertemporal CAPM (ICAPM), which derive from equilibrium models with explicit pref-

erences and market assumptions, APT is a reduced-form framework.13 It assumes a factor

structure in which returns decompose into systematic and idiosyncratic components. With

sufficiently many assets, idiosyncratic risk diversifies away, and the absence of arbitrage op-

portunities yields an approximate linear beta-pricing relation. As in the “FF” case, loadings

are static: α(zi,t) = αi and β(zi,t) = β. The APT naturally motivates the use of principal

component analysis (PCA) to extract statistical factors. Cooper et al. (2021) demonstrate

that such statistically constructed factors outperform most of the traditional “FF”-style

multi-factor models, in both economic and statistical terms. Following this insight, I extract

1, 3, 6, and 9 factors using the standard PCA. I refer to these specifications collectively as

“PCA”.

12The market factor is the weighted average of all stocks. The size, value, profitability, investment, mo-
mentum, BAB, mispricing factors are constructed using characteristics “market equity”, “be me”, “ope me”,
“at gr1”, “ret 12 1”, “betabab 1260d”, “mispricing mgmt”, and “mispricing perf”.

13Extensions that embed APT in an equilibrium setting include Connor (1984) and Connor and Korajczyk
(1988).
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Third, I examine conditional linear models with latent factors, which allow risk loadings

to vary with stock characteristics. Specifically, I implement the instrumented principal com-

ponent analysis (IPCA) models of Kelly et al. (2019) with 1, 3, 6, and 9 factors. In this

framework, the intercepts and loadings are modeled as linear functions of observable charac-

teristics: α(zi,t) = Γ′
αzi,t and β(zi,t) = Γ′

βzi,t. Unlike FF models, which rely on pre-specified

factors, or PCA models, which assume static loadings, IPCA jointly estimates latent fac-

tors and their time-varying exposures using an alternating least squares (ALS) algorithm. I

collectively refer to these models as “IPCA”.14

Finally, I also study conditional non-linear models with latent factors, which leverage

machine learning methods to capture richer relationships between characteristics and risk

exposures. While IPCA models imposes linearity, neural networks can approximate complex

non-linear mappings. I use the conditional autoencoder model of Gu et al. (2021). Autoen-

coders are neural networks designed for unsupervised dimension reduction, which can be

viewed as nonlinear analogues of PCA. They aim to learn a compressed, low-dimensional

representation of input data by training the network to reconstruct their own inputs as accu-

rately as possible. A standard latent factor model can be interpreted as a simple autoencoder,

while conditional autoencoders extend this by incorporating observable characteristics. The

architecture consists of two networks: a multi-layer beta network capturing non-linear map-

pings from characteristics to loadings, and a single-layer factor network generating latent

factors as linear combinations of portfolios. The two are then combined as in equation (12).

My implementation follows Gu et al. (2021) but adds an intercept term in the beta network,

allowing αi,t to vary flexibly with characteristics, and uses the 273 characteristic-sorted

portfolios as the input layer to the factor network. Estimation relies on stochastic gradient

descent (SGD), with learning rate tuning, LASSO (l1) penalization, and early stopping for

regularization.15 I refer to these models collectively as “AE”.16

I evaluate factor models both in-sample and out-of-sample. For in-sample analysis, I

run a one-time full-sample model estimation. For out-of-sample analysis, I estimate models

14Another strand of conditional linear factor models emphasizes time-varying risk premia in addition to
time-varying loadings, pioneered by Ferson and Harvey (1991), who attribute much of cross-sectional return
predictability to variations in risk premia than by variations in betas. Gagliardini et al. (2016) further develop
econometric methods for large panels of individual stocks, modeling both risk premia and risk loadings as
parametric functions of macro instruments and stock characteristics.

15Other machine learning approaches include Feng et al. (2024), who use feed-forward networks to map
characteristics into deep characteristics that generate latent deep factors, and Chen et al. (2024), who incor-
porate no-arbitrage directly into the loss function via a generative adversarial network (GAN) framework.
Their architecture pairs an SDF network that constructs the pricing kernel with a conditional network
that selects assets and moments yielding the largest mispricings, iterating until arbitrage opportunities are
eliminated.

16I use two hidden layers in the beta network, with 32 and 16 neurons, respectively. The empirical results
are robust to the choice of network depth.
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Table 1: Model Total R2 (%)

Models
In-Sample Out-of-Sample

1-factor 3-factor 6-factor 9-factor 1-factor 3-factor 6-factor 9-factor

FF 87.0 93.3 95.0 95.9 86.6 92.1 93.9 94.5

PCA 92.7 97.3 98.4 98.9 92.3 96.2 97.4 98.1

IPCA 75.4 93.1 94.4 95.3 73.6 93.0 94.4 95.2

AE 83.1 90.8 94.2 95.0 80.5 88.8 92.8 92.1

Notes: This table reports the total R2 values for characteristic-sorted portfolios across four classes
of factor models containing 1, 3, 6, and 9 factors.

using expanding windows and apply estimated model parameters in the out-of-sample period.

For the conditional autoencoder models, in particular, I split the full sample into training,

validation, and testing sets. The initial training period is 1960–1977 (18 years), the validation

period is 1978–1989 (12 years), and the testing period is 1990–1991 (1 year). Following the

literature (e.g., Gu et al., 2020), I refit the models annually. At each refit, the training

sample expands by one year, while the validation sample is rolled forward with a fixed

length, always including the most recent 12 years. This setup yields an out-of-sample period

from 1990 to 2024, totaling 35 years. Since non–deep learning models typically do not require

hyperparameter tuning, I combine the training and validation samples for estimation and use

the same 1-year testing window for out-of-sample evaluation. To ensure comparability, both

the in-sample and out-of-sample periods are set to span January 1990 through December

2024, totaling 420 months. When the sample period is extended to January 1965–December

2024 for the FF, PCA, and IPCA models, the results and conclusions remain unchanged.

I start with the statistical performance of various factor models. Kelly et al. (2019) and

Gu et al. (2021) introduce total R2 to measure the model explanatory power of test assets

using contemporaneous factor realizations:

R2
total = 1−

∑
i,t

(
ri,t − β̂

′
if̂ t

)2∑
i,t r

2
i,t

. (13)

Table 1 reports the total R2 values for characteristic-sorted portfolios across four classes

of factor models containing 1, 3, 6, and 9 factors. All specifications display high time-

series R2 values above 75%. These results indicate that existing factor returns account for

nearly all of the common time-series variation in stock returns (Lopez-Lira and Roussanov,

2020). However, they may still perform poorly in explaining the cross-section of expected
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Figure. 4. Ten Beta-Sort Portfolios: Time-Series Regression Results
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Notes: This figure shows the time-series regressions results of pricing ten beta-sorted portfolios
using two factor models: (1) the standard CAPM and (2) an extended two-factor model
incorporating both the market factor (MKT) and the betting-against-beta factor (BAB). Panel A
and B shows the time-series alphas and R-squares for the 10 portfolios, respectively.

returns, leaving substantial pricing errors unaccounted for. Table D.1 and D.2 also reports

the statistical performance of these factor models on individual stocks.

3.3. A Simple Exercise: Ten Beta-Sorted Portfolios

Before analyzing the four classes of factor models on the 273 characteristic-sorted port-

folios, I begin with a simple illustrative exercise using only ten test assets. The purpose of

this exercise is to demonstrate a key conceptual point: even if one identifies a model that

near-perfectly prices all risky assets, that model may correspond to an arbitrary stochastic

discount factor (SDF) implying an arbitrary zero-beta rate—one that provides no informa-

tion about the true risk-free rate.

I evaluate ten portfolios sorted by market beta as test assets and compare two factor

models: (1) the standard CAPM and (2) an extended two-factor model incorporating both

the market factor (MKT) and the betting-against-beta factor (BAB). Figure 4 reports the

time-series regression results for pricing the ten beta-sorted portfolios under these two mod-

els. Panel A illustrates the well-known beta anomaly under the CAPM: low-beta portfolios

exhibit positive alphas, while high-beta portfolios display negative alphas. Adding the BAB

factor eliminates this pattern and improves the model’s time-series fit, as reflected in higher

R2’s (Panel B). In the cross-section regressions estimated via generalized least squares (GLS),

the CAPM produces a statistically significant annualized intercept λ0 of 6.50%, whereas the
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Table 2: Ten Beta-Sort Portfolios: Cross-Sectional Regression Results

Models λ0 (ann., %) λMKT (ann., %) λBAB (ann., %) R2 (%)

CAPM 6.50 6.04 77.9

(6.41) (5.31)

CAPM+BAB 1.90 10.67 -4.40 86.3

(0.50) (3.85) (-4.65)

Notes: This table reports the cross-sectional regressions results of pricing ten beta-sorted

portfolios using two factor models: (1) the standard CAPM and (2) an extended two-factor model

incorporating both the market factor (MKT) and the betting-against-beta factor (BAB). The

regression for the two-factor model is: E[Ri] = λ0 + β′
i,MKTλMKT + β′

i,BABλBAB + ei. Estimation

uses generalized least squares (GLS). t-statistics are reported in parentheses.

intercept becomes statistically insignificant under the two-factor model. The cross-sectional

R2 also increases from 77.9% to 86.3%. These results indicate that the two-factor specifica-

tion statistically passes the cross-sectional test: the MKT and BAB factors jointly capture

the cross-section of ten beta-sorted portfolios, leaving an insignificant intercept.

Since the cross-sectional regressions are estimated using GLS, the intercept term λ0 is

equivalent to the estimated zero-beta rate implied by the unit-investment, minimum-variance

zero-beta portfolio (see Section 2.1). Accordingly, the zero-beta rate estimated from the ten

beta-sorted portfolios under the two-factor model is 1.90% per year, though it is statistically

insignificant. During the same sample period, the average one-month Treasury yield is

3.26%. This finding illustrates that the zero-beta rate can take on an arbitrary value even

when the factor model achieves an almost perfect fit in pricing risky assets. In mean–variance

terms, a near-perfect pricing model merely implies that the factor-model portfolio lies close

to the mean–variance frontier, not necessarily close to the (unobserved) tangency portfolio

associated with the true risk-free rate.

3.4. Measuring Model Misspecification

Section 2.4 introduces an empirical measure of factor model misspecification. Specifically,

I construct the optimal zero-investment, zero-beta portfolios implied by each factor model

using the analytical solution in Equation (10). Portfolios are formed both in-sample and out-

of-sample to avoid full-sample overfitting and look-ahead bias. The Sharpe ratios of these

strategies serve as quantitative measures of model misspecification: the higher the attainable

Sharpe ratio from a factor-neutral portfolio, the greater the potential profits from exploiting

model-implied pricing errors, and thus, the greater the degree of misspecification.
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Table 3: Maximum Sharpe Ratios of Zero-Investment Zero-Beta Portfolios (Annualized)

Models
In-Sample Out-of-Sample

1-factor 3-factor 6-factor 9-factor 1-factor 3-factor 6-factor 9-factor

FF 3.31 3.30 3.26 3.15 1.27 1.27 1.20 1.08

PCA 3.31 3.30 3.18 3.15 1.26 1.28 1.16 1.01

IPCA 3.30 3.29 3.26 3.21 1.28 1.27 1.12 0.99

AE 3.31 3.30 3.29 3.17 1.27 1.16 1.09 0.98

Notes: This table reports the in-sample and out-of-sample annualized maximum Sharpe ratios of

zero-investment, zero-beta portfolios implied by the FF, PCA, IPCA, and AE models with 1, 3, 6,

and 9 factors.

Table 3 reports the annualized maximum Sharpe ratios of zero-investment, zero-beta

portfolios implied by the FF, PCA, IPCA, and AE models with 1, 3, 6, and 9 factors. The

first four columns show that in-sample Sharpe ratios are highly positive, ranging from 3.15

to 3.31 on an annualized basis. Since a correctly specified factor model should imply a zero

Sharpe ratio for such portfolios, these high values indicate that all models considered in this

paper are substantially misspecified in-sample. The last four columns of Table 3 examine the

degree of misspecification out-of-sample. Out-of-sample Sharpe ratios are markedly lower

than their in-sample counterparts—a typical manifestation of full-sample overfitting and

estimation error—yet they remain economically large, ranging from 0.98 to 1.28. Overall, the

evidence strongly suggests that prominent factor models, including those based on advanced

machine learning methods (IPCA and AE), exhibit significant misspecification, as it remains

highly profitable to invest in zero-beta portfolios with no exposure to systematic factor

risks defined in given models. A comparison across models with varying numbers of factors

suggests that increasing the number of factors from one to nine yields little improvement,

as the corresponding Sharpe ratio reduction is small—even the nine-factor models imply an

annualized Sharpe ratio for zero-investment, zero-beta portfolios around 1.

Figure 5 visualizes the misspecification measure by plotting the out-of-sample, zero-

investment zero-beta portfolios in the mean-standard deviation diagram for the FF, PCA,

IPCA, and AE models with six factors. I construct these portfolios for each factor model in

the following steps. First, in each expanding estimation window, I compute the null space of

estimated betas17. Second, I randomly simulate 50,000 linear combinations of basis vectors

17The null space of betas is characterized by a set of basis vectors. Any linear combination of the basis
vectors will be zero-beta by definition.
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Figure. 5. Out-of-Sample Zero-Investment, Zero-Beta Portfolios (Six Factors)
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Notes: This figure shows the out-of-sample, zero-investment zero-beta portfolios in the
mean-standard deviation diagram for the FF, PCA, IPCA, and AE models with six factors.

around the zero-vector in the beta null space. This makes sure that the simulated portfolios

are not too far away from the origin. Next, I apply these beta-neutral weights to portfolio

returns in out-of-sample periods. Finally, I evaluate the mean and standard deviation of

these portfolios ex post. Consistent with our analytical results in Figure 3, zero-investment

zero-beta portfolios fall into a triangular cone area with line zero-beta frontiers. Visible

deviations of these cones from the horizontal zero line indicate model misspecification, since

correctly specified models should yield zero-beta portfolio mean returns equal to zero. The

slope of these zero-beta frontiers correspond to the out-of-sample maximum Sharpe ratio

values reported in Table 3.

In summary, the empirical assessment of factor model misspecification yields two key

findings for the empirical asset pricing literature. First, prominent factor models exhibit

economically large pricing errors that can be profitably exploited through investment strate-

gies, indicating substantial model misspecification. Second, neither the adoption of advanced

machine learning techniques nor the inclusion of additional factors (up to nine in this anal-

ysis) materially alleviates this misspecification.
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Figure. 6. Out-of-Sample Zero-Beta Rate across Different Asset Universes
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Notes: This figure shows the out-of-sample estimated zero-beta rates obtained from
unit-investment, minimum-variance zero-beta portfolios across two asset universes that differ in
their GMV portfolio returns. In the first asset group (black dashed line), which includes the full
set of 273 characteristic-sorted portfolios, the mean GMV portfolio return is lower (10.1%). In the
second asset group (blue dashed line), consisting of the 136 high-variance portfolios, the mean
GMV portfolio return is higher (12.3%). Four classes of factor models—FF, PCA, IPCA, and
AE—with 1, 3, 6, and 9 factors are analyzed. The estimated zero-beta rates are represented by
circles, squares, diamonds, and triangles, respectively.

3.5. Inspecting the Robustness of Zero-Beta Rate Estimation

Section 2.3 shows that factor model misspecification tends to bias upward the estimated

zero-beta rate obtained from the unit-investment, minimum-variance zero-beta portfolio.

Greater misspecification may push the estimated zero-beta rate toward the return on the

global minimum-variance (GMV) portfolio, rGMV . Building on this insight, I hypothesize

that the observed robustness of zero-beta rate estimates across different factor models arises

because these models exhibit similarly large degrees of misspecification, which causes the

estimated zero-beta rate to appear close to the mean return of the GMV portfolio.

To inspect the underlying source of robustness, I examine two sets of characteristic-sorted

portfolios that differ in their GMV portfolio returns. Specifically, I rank the characteristic-

sorted portfolios by their return variances and select the 130 portfolios with the highest

variances as an alternative universe of test assets. The first asset group thus contains the

full set of 273 characteristic-sorted portfolios, while the second group includes only the 136
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high-variance portfolios. I construct the GMV portfolios for both groups in-sample and out-

of-sample. The analytical portfolio weights for the GMV portfolio are given by Σ−1ι/ι′Σ−1ι.

For the in-sample construction, the full-sample estimate of Σ is used. For the out-of-sample

construction, I estimate Σ using expanding windows and apply the resulting weights to the

following month’s returns. The resulting out-of-sample mean returns of the GMV portfolio

are 10.1% and 12.3% for the two asset groups, respectively.18 This partition enables an

examination of whether zero-beta rate estimates differ systematically across asset universes

characterized by distinct GMV portfolio returns.

Figure 6 shows the out-of-sample estimated zero-beta rates obtained from unit-investment,

minimum-variance zero-beta portfolios across two asset universes that differ in their GMV

portfolio returns. In the first asset group (black dashed line), which includes the full set

of 273 characteristic-sorted portfolios, the mean GMV portfolio return is lower (10.1%). In

the second asset group (blue dashed line), consisting of the 130 high-variance portfolios, the

mean GMV portfolio return is higher (12.3%). Across both asset universes, the estimated

zero-beta rates appear robust to the choice of factor model and to the number of factors.

The literature tends to interpret the estimation robustness as evidence that these estimates

capture the true, unobserved risk-free rate. If that were the case, the zero-beta rates should

be similar across different asset universes. However, the results show that the zero-beta rates

are systematically higher in the universe with the higher GMV portfolio return. Moreover,

the average estimated rates lie close to the mean GMV portfolio returns within their respec-

tive asset groups. This pattern suggests that the estimated zero-beta rates may primarily

reflect the mean return of the GMV portfolio rather than the true risk-free rate, providing

empirical support for my analytical conjecture that substantial model misspecification biases

zero-beta rate estimates upward.

3.6. Simulation Analysis

I further analyze the relationship between the estimated zero-beta rate and factor model

misspecification through simulation exercises. The purpose of these simulations is twofold.

First, they demonstrate that when a factor model is correctly specified, it can recover the

true, unobserved risk-free rate by estimating the expected return of the unit-investment,

zero-beta portfolio. This result confirms that the estimation procedures themselves are sta-

tistically valid—there is nothing inherently wrong with the methods. Second, the simulations

18Although the literature typically reports full-sample zero-beta rate estimates, I primarily focus on the
zero-beta rate implied by out-of-sample, unit-investment zero-beta portfolios. This approach provides a more
realistic measure of the zero-beta return that investors could feasibly earn in practice. In-sample estimates
are also reported in Appendix D.2.
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shed lights on quantifying the extent to which model misspecification can bias zero-beta rate

estimates upward.

I conduct two distinct sets of simulations. The first simulates stock returns based on

a return-generating process implied by a factor model, while the second directly calibrates

and simulates the parameters of the mean–variance frontier (MVF). Both exercises are de-

signed to evaluate how model misspecification distorts the estimated zero-beta rate. In the

simulated-return framework, model misspecification is interpreted as omitted risk factors.

Given any misspecified model, I estimate the zero-beta rate and the maximum Sharpe ratio

of the zero-investment, zero-beta portfolio following the same empirical procedures described

earlier. In contrast, in the MVF-based simulation, model misspecification is interpreted as

portfolio inefficiency, which allows for analytical expressions of both the zero-beta rates and

the maximum Sharpe ratios.

3.6.1. Simulating Stock Returns

Following standard practice of simulation in the literature, I assume a return-generating

process based on a factor model. Specifically, I simulate stock returns according to a “true”

12-factor model that includes the market, size, value, profitability, investment, momentum,

betting-against-beta (BAB), management-based mispricing, performance-based mispricing,

idiosyncratic volatility, liquidity and quality factors19. Factor construction follows the pro-

cedures described in Section 3.1. In this artificial economy, these 12 factors represent the

complete set of priced risks. Using time-series regressions, I estimate factor loadings (βi) and

residual volatilities (σi) for each of 273 characteristic-sorted portfolio over the 780-month pe-

riod from January 1960 to December 2024. I treat these estimated betas as the true risk

exposures and resample factor return series using the empirical means and standard devia-

tions of the 12 factors. Portfolio returns are then simulated using the true betas, resampled

factor realizations, and calibrated residual volatilities according to the following process:

Ri,t = rf + β′
iFt + σiεi,t, where εi,t is drawn from a standard normal distribution. The true

risk-free rate, rf , is assumed constant and set equal to the average 1-month Treasury bill

yield of 4.27% (annualized) over the 780-month period. This procedure yields simulated

returns for 273 portfolios over 780 months.

Suppose an econometrician is unaware of the true 12-factor return structure and attempts

to estimate the zero-beta rate using an incomplete—and therefore misspecified—factor model.

I start with measuring the degree of model misspecification by the number of omitted factors.

Suppose the market factor is always included in the model. Among the remaining 11 factors,

19The 12 factors are constructed using characteristics “market equity”, “be me”, “ope me”, “at gr1”,
“ret 12 1”, “betabab 1260d”, “mispricing mgmt”, “mispricing perf”, “ivol ff3 21d”, “aliq at”, and “qmj”
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Figure. 7. Simulating Stock Returns
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Notes: This figure illustrates the relationship between zero-beta rate estimation and factor model
misspecification in a simulation setting where stock returns are generated from a 12-factor model.
Panel (a) quantifies misspecification by the number of omitted risk factors and plots the median
estimated zero-beta rate against the number of missing factors. Panel (b) quantifies
misspecification by the maximum Sharpe ratio attainable from zero-investment, zero-beta
portfolios, showing the pairs of the estimated zero-beta rates and the corresponding Sharpe ratios.

there are
(
11
1

)
= 11 possible ways to omit one factor,

(
11
2

)
= 55 possible ways to omit two

factors, and so forth. For each group of incomplete models with the same number of missing

factors, I estimate the zero-beta rates and record the median value (results are similar when

using the mean). Panel (a) of Figure 7 plots the median estimated zero-beta rate against the

number of omitted factors. The upward-sloping curve provides clear evidence that greater

model misspecification biases zero-beta rate estimates upward. When no factors are omitted

(the correctly specified model), the estimated zero-beta rate successfully recovers the true,

unobserved risk-free rate.

Connecting to earlier analysis, I also compute the measure of model misspecification

proposed in this paper—the maximum Sharpe ratio attainable by zero-investment, zero-beta

portfolios. This metric quantifies the magnitude of investment opportunities left unexplained

by a misspecified model. For each misspecified specification, I obtain a pair consisting of

the estimated zero-beta rate and the corresponding maximum Sharpe ratio. Panel (b) of

Figure 7 displays the scatter plot of these pairs, revealing a strong positive relationship

between model misspecification and zero-beta rate estimates. The tight, upward-sloping

pattern indicates that as the degree of misspecification increases (i.e., as the beta-neutral

Sharpe ratio rises), the estimated zero-beta rate becomes progressively higher, rising from

its true value of 4.27% to over 8% when the maximum Sharpe ratio exceeds 1.2 (annualized).
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Figure. 8. Simulating Mean-Variance Parameters
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Notes: This figure illustrates the relationship between zero-beta rate estimation and factor model
misspecification in a simulation setting where mean-variance frontier parameters are calibrated.
Panel (a) plots the Cumulative Distribution Function (CDF) of the estimated zero-beta rates
from 100,000 inefficient portfolios p that are uniformly distributed inside the mean-variance
frontier. Panel (b) shows the probability that the estimated zero-beta rate (rz) exceeds a given
threshold (x), as a function of the maximum Sharpe ratio attainable by zero-investment,
zero-beta portfolios.

This result is consistent with the empirical evidence that most models exhibit an annualized

maximum Sharpe ratio between 1.0 and 1.2 (Table 3), while the corresponding estimated

zero-beta rates range from approximately 8% to 10% per year (Figure 6).

3.6.2. Simulating Mean-Variance Parameters

The second simulation abstracts from a specific factor structure to provide a more general

analysis. Instead of simulating returns, I directly calibrate the geometric parameters of the

mean-variance frontier (MVF) itself. This allows us to assess the statistical distribution

of ZBR estimates conditional on the true shape of the investment opportunity set. The

mean-variance frontier is determined by three parameters: a = ι′Σι, b = ι′Σµ, c = µ′Σµ. I

calibrate a and b using the global minimum-variance (GMV) portfolios since rGMV = b/a and

σ2
GMV −1/a. Assuming rGMV = 11% and σGMV = 6.5% (annualized) solves a and b. I assume

the true risk-free rate (rf ) is 3% annually and the return of the true Tangency portfolio (rp∗)

is 20% annually. Thus, parameter c is pinned down by c = rf (b− arp∗) + brp∗ (proved

in Appendix B.1 Equation B.9). In the mean-variance space, a correctly specified model

corresponds to the true Tangency portfolio p∗, and any misspecified model is associated with

an inefficient portfolio p. With the calibrated MVF, I randomly generate a large number of
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inefficient portfolios p with rp and σp. This approach allows us to compute zero-beta rate

estimates as well as Sharpe ratios using analytical expressions:

rz = rGMV − σ2
GMV

rp − rGMV

σ2
p − σ2

GMV

(14)

Sz =

√
ac− b2

a
·
(
1−

σ2
p∗ − σ2

GMV

σ2
p − σ2

GMV

)
(15)

where Sz denotes the maximum Sharpe ratio attainable by zero-investment, zero-beta port-

folios given a factor model. Proposition 3 shows that this slope equals to the asymptote of

the unit-investment, zero-beta frontier. (Appendix B.7 proves Equation 15).

Figure D.2 illustrates the procedure of randomly generating inefficient portfolios. Each

inefficient portfolio (misspecified model) produces a pair of the zero-beta rate estimate and

the maximum Sharpe ratios of zero-investment, zero-beta portfolios. Assuming that the

inefficient portfolio is uniformly distributed inside the mean-variance frontier, Figure 8 Panel

(a) plots the Cumulative Distribution Function (CDF) of the estimated zero-beta rates from

100,000 inefficient portfolios p. The distribution of zero-beta rates is clustered visibly in areas

with high zero-beta rate estimates (close to the return of the GMV porytfolio). The CDF’s

shape—rising slowly at first and then accelerating steeply at high values—indicates that

a large mass of the probability distribution is concentrated at high zero-beta rate values.

Estimates of 10-11% (≈ rGMV ) are common in calibrated true world with low risk-free

rate. Panel (b) explicitly links this phenomenon to the maximum Sharpe ratio. It shows

the probability that the estimated zero-beta rate (rz) exceeds a given threshold (x), as a

function of the maximum Sharpe ratio of the economy. The results are striking. When we

empirically observe an annualized maximum Sharpe ratios of 1.2 (indicating a high degree of

misspecification), the probability of the zero-beta rate estimate being greater than 8% (the

red line) is over 80%. Conversely, in a low-misspecification economy with a Sharpe ratio of

0.4, the probability of the ZBR exceeding 8% is effectively zero.

Taken together, these two simulation exercises provide robust evidence that high esti-

mates of the zero-beta rate are likely to be a direct consequence of factor model misspecifi-

cation rather than a truly high risk-free rate.

4. Equity Risk Premium Puzzle and Risk-Free Rate

Previous sections have shown, both theoretically and empirically, that even in a low risk-

free rate environment, it is highly likely to obtain a high estimated zero-beta rate—often close

to the mean return of the global minimum-variance (GMV) portfolio—when the underlying
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factor model is substantially misspecified. the zero-beta rate implied by a factor model

provides little definitive information about the true risk-free rate, and hence offers limited

insight into the magnitude of equity risk premium or convenience yield. In this section, I

turn to a conceptually complementary question: could the true risk-free rate itself be high?

I argue that a high risk-free rate intensifies the equity risk premium puzzle, thereby cre-

ating greater tension with structural models in macro-finance. At first glance, it is tempting

to assume that a high risk-free rate necessarily implies a low equity risk premium. This rea-

soning clearly applies to the market risk premium due to a negative mechanical relationship

between the risk-free rate and the market excess return. The market portfolio itself, however,

does not coincide with the true tangency portfolio—it may not even lie close to the tangency

portfolio in the mean–variance space, particularly given the massive misspecification of the

CAPM. When considering the risk premium on the true tangency portfolio, the relationship

in fact reverses: a higher risk-free rate can imply a larger equilibrium equity risk premium,

rather than a smaller one. To formalize this idea, I start from deriving an analytical relation-

ship linking the risk-free rate rf , the expected return on the GMV portfolio rgmv, and the

expected return on the (unobserved) tangency portfolio r∗p (The complete proof is provided

in Appendix B.4).

Proposition 4. In a mean–variance framework, let a = ι′Σι, b = ι′Σµ, c = µ′Σµ. Denote

the Tangency portfolio as p∗, risk-free rate as rf , expected return and volatility of the GMV

portfolio as rGMV and σGMV , respectively. Assume that rGMV > rf . The term (ac − b2)/a

represents the squared slope of the asymptote of the mean–variance frontier and can be in-

terpreted as the maximum Sharpe ratio attainable by all zero-investment portfolios. If there

exists a lower bound such that (ac− b2)/a ≥ L2, then

rp∗ − rf ≥ rGMV − rf +
σ2
GMVL

2

rGMV − rf
≥ 2σGMVL (16)

Equation (16) encapsulates some fundamental tensions in asset pricing. First, consider

the function f(x) = x+C/x, where x = rgmv − rf and C = σ2
gmvL

2. This function is convex

(U-shaped) and has its minimum at x =
√
C = σgmvL. This defines the minimum possible

tangency portfolio risk premium (r∗p − rf ≥ 2σGMVL). Interestingly, the lower bound for

tangency portfolio risk premium does not depend on the risk-free rate. If the investment

opportunities implied by L are economically meaningful, then the tangency portfolio risk

premium cannot be small. For instance, if L ≈ 0.5, σGMV ≈ 7%, then r∗p − rf ≥ 7%.

Since L represents the maximum Sharpe ratio attainable by all zero-investment portfolios,

it should be bounded below by the maximum Sharpe ratio of zero-investment, zero-beta

portfolios. Empirical evidence in Section 5 will indicate that such Sharpe ratio opportunities
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may exceed 0.5 after accounting for different types of implementation costs, implying even

larger tangency portfolio risk premia. Such high risk premia imply high prices of risk that

are difficult to reconcile within standard macro-finance structural models. Second, if we

accept a high risk-free rate that is close to rgmv, the GMV portfolio premium x = rgmv − rf

becomes very small. As x shrinks, the term C/x increases, generating even larger tangency

portfolio risk premia r∗p − rf .

In summary, higher risk-free rate implies larger equity risk premium for researchers to

explain. In other words, a high risk-free rate magnifies the equity risk premium puzzle,

rather than resolving it.

5. Investment Implications

Section 3.4 demonstrates that prominent factor models are substantially misspecified, as

they imply high Sharpe ratios from zero-investment, zero-beta portfolios. The annualized

in-sample and out-of-sample Sharpe ratios of these portfolios exceed 3 and 1, respectively,

as reported in Table 3. In this section, I further examine the investment implications of

such misspecification by asking whether these zero-beta strategies remain profitable after

accounting for realistic implementation costs.

5.1. Modeling Transaction Costs

Suppose πt denotes an N × 1 vector of portfolio allocation (dollar amounts) across in-

dividual stocks. The N × 1 turnover vector of individual stocks required to rebalance the

investment portfolio is:

τ t+1 = πt+1 − πt ◦ (ι+ rt) (17)

where ι an N × 1 vector of ones, and rt the N × 1 vector of individual returns. ◦ is the

component-wise product. πt ◦ (ι+ rt) represents the effective holdings prior to rebalancing.

An important insight from DeMiguel et al. (2024) is that netting trades across multiple

portfolios—a form of trading diversification—can yield substantial transaction-cost savings.

Following this idea, I first net the rebalancing trades across the 273 characteristic-sorted port-

folios before applying transaction costs at the individual-stock level. This procedure captures

the cost reduction from offsetting trades among portfolios while accurately accounting for

the actual costs incurred when adjusting positions in the underlying stocks.

I consider two types of transaction costs. First, proportional trading costs increase pro-

portionally to turnover trades:
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f(τ t) =
∥∥Φt ◦ τ t

∥∥
1

(18)

where ∥ · ∥1 =
∑N

i=1 | · | denotes the 1-norm, and Φt is a N × 1 vector of individual

stock-level transaction-cost parameters, measured by the average low-frequency effective

bid–ask spreads (Chen and Velikov, 2023). The individual transaction-cost parameter, Φt,

is measured using the average low-frequency (LF) effective bid–ask spreads described in

Chen and Velikov (2023). They provide both high-frequency (HF) measures, derived from

intraday trade and quote data, and low-frequency (LF) measures, based only on daily price

and volume data. Since HF measures are available only from 1983 onward, I use the average

of four LF measures (Hasbrouck, 2009; Corwin and Schultz, 2012; Kyle and Obizhaeva,

2016; and Abdi and Ranaldo, 2017), which are available across my full sample. Chen and

Velikov (2023) finds that LF measures tend to be biased upward compared to HF measures

in the modern era of electronic trading (post-2005). Moreover, Frazzini et al. (2018) argues

that actual transaction costs may be substantially lower than suggested by previous studies.

Consequently, the transaction costs in this analysis may be overestimated, implying that

the investment performance reported in Section 3 could be understated. Figure D.3 shows

the time variation of the mean, median, 5th percentile, and 95th percentile of individual

transaction costs from January 1960 to December 2024.

Because the proportional cost function is non-linear due to the absolute value operator,

I apply transaction costs after constructing the optimal portfolio weights from the standard

mean–variance optimization problem. This approach is conservative, as the resulting invest-

ment performance serves as a lower bound for the true performance that would obtain if

transaction costs were incorporated directly into the portfolio optimization stage.

Second, I consider price impact costs that are quadratic functions of turnover trades:

f(τ t) =
1

2
τ ′
tΛtτ t (19)

where 1
2
Λtτ t represents the price impact, and Λt is a N × 1 vector of individual stock-level

Kyle’s lambda, calibrated such that the market impact, 1
2
Λtτ t, is 0.1% when trading 1%

of the daily dollar volume of a stock (Jensen et al., 2024).20 The expected daily volume is

defined as the average daily dollar volume over the preceding six months.

Because the price impact cost function is quadratic in portfolio allocations, I incorporate

these costs in the portfolio optimization problem:

20I am using the same example as in Jensen et al. (2024): trading $5 million over a day in a stock with a
daily volume of $500 million moves the price by 1

2
0.2

$500m , leading to a transaction cost of 1 2 1
2

0.2
$500m×($5m)2 =

$5000.
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max
ω

ω′µ− γ

2
ω′Σω − W

2
ω′Λω

s.t. ω′ι = 0, ω′β = 0K

(20)

where γ is the risk aversion coefficient. W denotes investor wealth, which directly enters

into the optimization problem because of the quadratic form of trading costs. The analytical

solution for the optimal zero-investment, zero-beta portfolio weights is:

ω∗
z =

1

γ
Σ−1

[
I−Ω

(
Ω′Σ−1Ω

)−1
Ω′Σ−1

]
µ (21)

Ω = Σ+WΛ/γ (22)

To evaluate investment performance with price impact costs, I consider three investors

who have $5, $50, and $100 billion dollars at the end of 2024. I assume that investors’ wealth

grows at the same rate as the market, i.e. Wt = Wt−1(1 + Rm,t), where Rm,t denotes the

realized market return.

5.2. Zero-Investment, Zero-Beta Investing

Table 4 reports the annualized maximum Sharpe ratios of zero-investment, zero-beta

portfolios implied by the FF, PCA, IPCA, and AE models with 1 and 6 factors. Rows (1)

and (2) present the in-sample and out-of-sample Sharpe ratios without transaction costs,

which were previously discussed in Table 3. Column (3) incorporates proportional trading

costs, while Columns (4) through (6) account for price impact costs under scenarios where

investor wealth reaches $5, $50, and $100 billion, respectively, by the end of 2024. To ensure

comparability across models and cost specifications, all optimal portfolio weights are rescaled

to target a 15% annualized volatility within each rolling-window estimation period.

During the out-of-sample period from January 1990 to December 2024, the zero-beta

portfolios deliver consistently strong investment performance, even after accounting for trans-

action costs. With the exception of the case involving a $100 billion investor (by the end of

2024), the Sharpe ratios across all specifications exceed that of the market portfolio bench-

mark, whose annualized Sharpe ratio is 0.53 before costs and 0.52 after costs.21 For example,

the zero-beta strategies achieve annualized Sharpe ratios between 0.68 and 1.03 when propor-

tional costs are applied. For a $50 billion investor with price impact costs, the corresponding

Sharpe ratios range from 0.56 to 0.90.

As the number of factors increases, performance declines modestly, reflecting smaller

degrees of model misspecification. The particularly strong performance of the one-factor

21Transaction costs associated with trading the market portfolio are minimal.
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Table 4: Maximum Sharpe Ratios with Transaction Costs (Annualized)

Metrics
FF PCA IPCA AE

1-factor 6-factor 1-factor 6-factor 1-factor 6-factor 1-factor 6-factor

(1) 3.31 3.26 3.31 3.18 3.30 3.26 3.31 3.29

(2) 1.27 1.20 1.26 1.16 1.28 1.12 1.27 1.09

(3) 0.96 0.81 0.96 0.78 1.02 0.70 1.03 0.68

(4) 1.12 1.04 1.12 1.05 1.18 0.98 1.18 0.95

(5) 0.75 0.70 0.75 0.69 0.91 0.56 0.90 0.61

(6) 0.58 0.52 0.58 0.48 0.74 0.32 0.73 0.40

(1): In-sample.

(2): Out-of-sample, no transaction costs.

(3): Out-of-sample, proportional costs.

(4): Out-of-sample, price impact costs (wealth by 2024: $ 5 billions).

(5): Out-of-sample, price impact costs (wealth by 2024: $ 50 billions).

(6): Out-of-sample, price impact costs (wealth by 2024: $ 100 billions).

Notes: This table reports the annualized maximum Sharpe ratios of zero-investment, zero-beta

portfolios implied by the FF, PCA, IPCA, and AE models with 1 and 6 factors. Both in-sample

and out-of-sample portfolio constructions are considered. Transaction costs include proportional

trading costs and price impact costs. Portfolio weights are scaled to target an annualized

volatility of 15%.

strategies across all models is notable. Although such parsimonious models fall short of

capturing the full risk structure of returns, they can yield highly profitable and practically

implementable factor-neutral investment strategies. From an investment standpoint, this

suggests that simple market-neutral strategies may suffice, while extending to multi-factor,

beta-neutral portfolios offers limited incremental benefit in real-world settings.

Overall, the evidence suggests that substantial factor model misspecification can be prof-

itably exploited through zero-beta investment strategies, which represent feasible and at-

tractive opportunities—particularly for small- and medium-sized investors—and are most

effective in parsimonious one-factor implementations.

5.2.1. Risk-adjusted Returns

To further assess the performance of investing in zero-investment, zero-beta portfolios,

Table 5 reports their monthly risk-adjusted returns (alphas, in percent) from time-series

regressions on common risk factors: the Fama–French six factors (MKT, SMB, HML, RMW,

CMA, UMD). Rows (1) and (2) present the in-sample and out-of-sample alphas without

transaction costs. Column (3) incorporates proportional trading costs, while Columns (4)
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Table 5: Time-Series Regression Alphas (Monthly, %)

Metrics
FF PCA IPCA AE

1-factor 6-factor 1-factor 6-factor 1-factor 6-factor 1-factor 6-factor

(1) 3.09*** 3.26*** 3.09*** 3.07*** 3.08*** 3.02*** 3.09*** 3.10***

(14.26) (14.52) (14.24) (15.82) (14.22) (14.54) (14.25) (14.64)

(2) 1.46*** 1.64*** 1.46*** 1.49*** 1.46*** 1.19*** 1.45*** 1.24***

(4.54) (4.71) (4.55) (4.32) (4.50) (4.39) (4.50) (4.12)

(3) 1.29*** 1.46*** 1.29*** 1.26*** 1.27*** 0.88*** 1.29*** 0.86***

(4.25) (4.32) (4.25) (3.79) (4.33) (3.45) (4.33) (3.30)

(4) 1.05*** 1.40*** 1.06*** 1.22*** 1.13*** 0.89*** 1.13*** 0.94***

(3.94) (4.46) (4.00) (3.93) (4.20) (3.73) (4.18) (3.45)

(5) 0.43** 0.94*** 0.46*** 0.72*** 0.65*** 0.41** 0.63*** 0.43**

(2.24) (3.50) (2.44) (2.56) (3.45) (2.04) (3.36) (1.99)

(6) 0.19 0.66*** 0.22 0.41 0.43*** 0.18 0.41*** 0.17

(1.09) (2.55) (1.29) (1.42) (2.57) (0.88) (2.43) (0.84)

(1): In-sample.

(2): Out-of-sample, no transaction costs.

(3): Out-of-sample, proportional costs.

(4): Out-of-sample, price impact costs (wealth by 2024: $ 5 billions).

(5): Out-of-sample, price impact costs (wealth by 2024: $ 50 billions).

(6): Out-of-sample, price impact costs (wealth by 2024: $ 100 billions).

Notes: This table reports monthly alphas (%) from time-series regressions of zero-beta portfolio

returns on the Fama–French six factors. The models include FF, PCA, IPCA, and AE with one

and six factors. Both in-sample and out-of-sample portfolio constructions are considered.

Transaction costs include proportional trading costs and price impact costs. Newey-West

t-statistics are shown in parentheses. Significance levels: *** p < .01, ** p < .05, * p < .1.

through (6) account for price impact costs under scenarios where investor wealth reaches

$5, $50, and $100 billion, respectively, by the end of 2024. Alphas are highly positive

and statistically significant across all models except for the case involving a $100 billion

investor (by the end of 2024). Risk exposures to most factors are negligible and adjusted

R2 remains low (not shown). These results reinforce the interpretation that the portfolios’

strong performance is not driven by traditional factor risk exposures.

5.2.2. Portfolio Positions

Since shorting stocks is often more expensive than long stocks, the literature has dis-

covered that short-sales costs may eliminate the abnormal returns on investment strategies

(Muravyev et al., 2025). Although I do not directly compute the shorting costs in the zero-
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Table 6: Maximum Short Positions and Leverage Ratios (Six Factors)

Metrics
Panel A: Maximum Short Positions (%) Panel B: Leverage Ratios

FF PCA IPCA AE FF PCA IPCA AE

(1) 3.28 3.44 3.33 3.29 3.81 3.91 3.85 3.84

(2) 3.25 3.25 3.07 3.12 4.10 4.10 3.78 3.81

(3) 2.47 2.57 2.26 2.36 3.08 3.11 2.76 2.77

(4) 1.82 2.02 1.59 1.68 2.31 2.42 2.01 1.97

(5) 1.69 1.93 1.44 1.52 2.19 2.30 1.84 1.81

(1): In-sample.

(2): Out-of-sample, no transaction costs.

(4): Out-of-sample, price impact costs (wealth by 2024: $ 5 billions).

(5): Out-of-sample, price impact costs (wealth by 2024: $ 50 billions).

(6): Out-of-sample, price impact costs (wealth by 2024: $ 100 billions).

Notes: This table reports the maximum short positions (Panel A) of zero-beta portfolios on

individual stocks and the portfolio leverage ratio (Panel B) for FF, PCA, IPCA, and AE models

with 6 factors. Both in-sample and out-of-sample portfolio constructions are examined,

considering cases without transaction costs as well as with price impact costs.

investment zero-beta portfolios due to data availability, I examine the portfolio positions and

leverage ratios of these portfolios and find that short-sales costs may not be a big concern.

A legitimate concern with zero-investment portfolios is that they may involve unreal-

istically large positions in individual stocks. However, Panel (A) of Table 6 reports the

maximum short positions assigned to individual stocks within the zero-beta portfolios for all

models with six factors. The results show that the largest short position does not exceed

3.3% of the portfolio’ value, indicating that these portfolios are well diversified and free from

extreme concentration risk.

Because zero-investment, zero-beta portfolios are inherently long–short strategies, I also

examine their leverage ratios. Following Fama and French (2015), the leverage ratio is defined

as the total value of short positions divided by the total value of the portfolio. Panel (B)

of Table 6 shows that for all models with six factors, the leverage ratios range from 1.84 to

4.10, which are well within reasonable and implementable levels.

6. Conclusion

This paper revisits the long-standing zero-beta rate puzzle through the lens of factor

model misspecification. I demonstrate that the persistent finding of high estimated zero-

beta rates across a wide range of models may not reflect a high unobserved risk-free rate
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but rather the consequence of common model inefficiencies. Theoretically, when a factor

model is misspecified, the zero-beta rate is not uniquely defined, and the common practice

of focusing on the minimum-variance zero-beta portfolio tends to introduce an upward bias.

The bias magnitude depends systematically on the degree of inefficiency: as the degree of

model misspecification increases, the estimated zero-beta rate approaches the mean return

of the global minimum-variance portfolio.

To quantify this mechanism, I introduce a new measure of model misspecification based on

the maximum Sharpe ratio attainable by zero-investment, zero-beta portfolios. This measure

provides a direct, investment-based link between statistical misspecification and economic

inefficiency. Empirical analysis using a comprehensive cross-section of characteristic-sorted

portfolios shows that all major factor models—including machine-learning-based ones—remain

substantially misspecified, with zero-beta portfolios delivering Sharpe ratios exceeding one

even out of sample. Two simulation exercises confirm that such degrees of misspecification

are sufficient to fully reproduce the empirically observed high zero-beta rates.

Finally, the paper documents that model misspecification generates economically signif-

icant and implementable trading opportunities. Zero-investment, zero-beta strategies that

exploit model-implied mispricing yield persistently positive alphas and high Sharpe ratios

even after realistic transaction costs.

Overall, this study transforms the zero-beta rate puzzle from a mystery of financial equi-

librium into a measurable outcome of factor model misspecification. What appears as a stable

empirical fact—the persistently high zero-beta rate—is, in fact, the byproduct of a shared

structural flaw in factor models. The results caution against using factor-model-implied zero-

beta rates to infer fundamental quantities such as the risk premium or convenience yield.

At the same time, I show that systematic pricing errors embedded in these models can be

harnessed to design profitable and economically interpretable investment strategies.
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Appendix A. Data

A.1. Stock Characteristics

Table A.1: Stock Characteristics

Name Description Paper

age Firm age (since listing), measured in months. Jensen, Kelly and Peder-

sen (2023).

aliq at Ortiz-Molina liquidity measure scaled by assets

(ALIQ/AT ).

Ortiz-Molina and Phillips

(2014).

aliq mat Ortiz-Molina liquidity measure scaled by market assets

(ALIQ/MAT ).

Ortiz-Molina and Phillips

(2014).

ami 126d Amihud illiquidity (average |R|/V OL) over 126 days. Amihud (2002).

at be Assets-to-book equity (AT/BE). Fama and French lineage

(shown in JKP).

at gr1 1-year growth in total assets (ATt/ATt−12 − 1). JKP construction.

at me Assets-to-market equity (AT/ME). JKP construction.

at turnover Asset turnover (SALE/AT ). JKP construction.

be gr1a 1-year change in book equity scaled by assets ((BEt −
BEt−12)/ATt).

JKP construction.

be me Book-to-market equity (BE/ME). Rosenberg, Reid and

Lanstein (1985).

beta 60m CAPM beta estimated over 60 months. Fama-MacBeth / CAPM

estimates (JKP).

beta dimson 21d Dimson-style beta (21-day window with lead/lag market

adjustments).

Dimson (1979) style

(JKP).

betabab 1260d Betting-against-beta metric (long low-beta, short high-

beta) over 1260 days.

Frazzini and Pedersen

(2014) family.

betadown 252d Downside beta estimated over 252 days (restricted to days

market return negative).

Ang, Chen and Xing

(2006).

bev mev Book enterprise value to market enterprise value

(BEV/MEV ).

Penman, Richardson and

Tuna (2007).

bidaskhl 21d Bid-ask high-low spread estimator over 21 days (Corwin

and Schultz method).

Corwin and Schultz

(2012).

capex abn Abnormal capital expenditures (deviation from expected

CAPX).

Titman, Wei and Xie

(2004).

capx gr1 1-year growth in capital expenditures

(CAPXt/CAPXt−12 − 1).

JKP construction.

capx gr2 2-year growth in capital expenditures

(CAPXt/CAPXt−24 − 1).

JKP construction.

Continued on next page
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Table A.1 – continued from previous page

Column 1 Column 2 Column 1

capx gr3 3-year growth in capital expenditures

(CAPXt/CAPXt−36 − 1).

JKP construction.

cash at Cash and short-term investments scaled by assets

(CHE/AT ).

Palazzo (2012) and JKP.

chcsho 12m Net stock issues / change in shares over 12 months (CHC-

SHO 12m).

Pontiff and Woodgate

(2008).

coa gr1a Change in current operating assets 1-year scaled by as-

sets.

JKP construction (current

operating assets family).

col gr1a Change in current operating liabilities 1-year scaled by

assets.

JKP construction.

cop at Cash from operations scaled by assets (COP/AT ). JKP construction / cash-

flow measures.

cop atl1 Lagged cash-from-operations scaled by lagged assets

(COP/ATt−12).

JKP construction.

corr 1260d Correlation of stock excess returns with market over 1260

days.

JKP construction.

coskew 21d Co-skewness with market over 21 days (co-skew measure). JKP construction (skew-

ness family).

cowc gr1a Change in current operating working capital 1-year. Richardson, Sloan, Soli-

man and Tuna (2005).

dbnetis at Net debt issuance scaled by assets (DBNETIS/AT ). JKP construction (is-

suance family).

debt gr3 Growth in book debt over 3 years (DLTT change over 3

years).

Lyandres, Sun and Zhang

(2008).

debt me Debt scaled by market equity (DEBT/ME). Bhandari / JKP family.

dgp dsale Change in gross profit minus change in sales (∆GP −
∆SALE).

Abarbanell and Bushee

(1998) lineage.

div12m me Dividend yield over 12 months (DIV12m/ME). Litzenberger and Ra-

maswamy (1979).

dolvol 126d Average dollar trading volume over 126 days

(DOLV OL126d).

Chordia, Subrahmanyam

and Anshuman (2001).

dolvol var 126d Variability (std) of dollar volume over 126 days. Chordia et al. (2001).

dsale dinv Change in sales minus change in inventory (∆SALE −
∆INV ).

Abarbanell and Bushee

(1998).

dsale drec Change in sales minus change in receivables (∆SALE −
∆REC).

Abarbanell and Bushee

(1998).

dsale dsga Change in sales minus change in SG&A (∆SALE −
∆XSGA).

Abarbanell and Bushee

(1998).

Continued on next page
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Table A.1 – continued from previous page

Column 1 Column 2 Column 1

earnings variability Variability (volatility) of earnings (NI) across periods

(e.g., std of NI).

Earnings volatility litera-

ture (JKP cites relevant

sources).

ebit bev EBIT scaled by book enterprise value (EBIT/BEV ) —

operating profitability measure.

Soliman (2008) / JKP.

ebit sale EBIT scaled by sales (EBIT/SALE) — profit margin. Soliman (2008).

ebitda mev EBITDA scaled by market enterprise value

(EBITDA/MEV ).

Loughran and Wellman

(2011) (profitability fami-

lies).

emp gr1 Employment (employees) 1-year growth

(EMPt/EMPt−12 − 1).

JKP construction (labor

efficiency family).

eq dur Equity duration (duration-like measure of equity cash

flows).

Dechow, Sloan and Soli-

man (2004).

eqnpo 12m Net equity payout over 12 months (EQNPO 12m). Daniel and Titman (2006);

Boudoukh et al. (2007).

f score Piotroski F-score (composite score 0–9 from fundamen-

tals).

Piotroski (2000).

fcf me Free cash flow scaled by market equity (FCF/ME). Lakonishok, Shleifer and

Vishny (1994).

fnl gr1a Change in financial liabilities 1-year scaled by assets. JKP construction

(financial-liabilities fam-

ily).

gp at Gross profit scaled by assets (GP/AT ) — gross profitabil-

ity.

Novy-Marx (2013).

gp atl1 Lagged gross profit scaled by lagged assets

(GPt−1/ATt−12).

JKP construction.

inv gr1 Inventory 1-year growth (INVt/INVt−12 − 1). JKP construction.

inv gr1a Change in investment/inventory 1-year scaled by assets. JKP construction.

iskew capm 21d Idiosyncratic skewness from CAPM residuals over 21

days.

Bali, Engle and Murray

(2016).

iskew ff3 21d Idiosyncratic skewness from FF3 residuals over 21 days. Bali, Engle and Murray

(2016).

ival me Intrinsic value scaled by market equity (IV AL/ME) —

intrinsic value measure.

Frankel and Lee (1998);

JKP notes on scaling.

ivol capm 21d Idiosyncratic volatility from CAPM residuals (21 days). Ang, Hodrick, Xing and

Zhang (2006).

ivol capm 252d Idiosyncratic volatility from CAPM residuals (252 days). Ang et al. (2006).

ivol ff3 21d Idiosyncratic volatility from FF3 residuals (21 days). Ang et al. (2006).

kz index Kaplan–Zingales (KZ) index of financing constraints

(composite).

Lamont, Polk and Saa-

Requejo (2001) lineage.

Continued on next page
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Table A.1 – continued from previous page

Column 1 Column 2 Column 1

lnoa gr1a Change in long-term net operating assets 1-year scaled

by assets.

JKP construction.

lti gr1a Change in long-term investments 1-year scaled by assets. JKP construction.

market equity Market equity (ME) — price times shares outstanding

(PRC × SHARES).

CRSP/Compustat stan-

dard.

mispricing mgmt Mispricing composite (management-based signals; multi-

component).

Stambaugh and Yuan

(2017) and JKP.

mispricing perf Mispricing composite (performance-based signals). Stambaugh and Yuan

(2017) and JKP.

ncoa gr1a Change in non-current operating assets 1-year scaled by

assets.

JKP construction.

ncol gr1a Change in non-current operating liabilities 1-year scaled

by assets.

Richardson et al. (2005)

family.

netdebt me Net debt scaled by market equity (NETDEBT/ME). JKP construction / Pen-

man et al. (2007) family.

nfna gr1a Change in net financial assets 1-year scaled by assets. JKP construction.

ni ar1 First-order autocorrelation of net income (earnings per-

sistence AR(1)).

Earnings persistence liter-

ature (JKP).

ni be Net income scaled by book equity (NI/BE) — ROE fam-

ily.

Haugen and Baker (1996)

lineage.

ni ivol Idiosyncratic volatility of net income (earnings volatility). Francis et al. (2004) style

measures.

ni me Net income scaled by market equity (NI/ME) —

earnings-to-price family.

Basu (1983) lineage.

nncoa gr1a Change in net non-current operating assets 1-year scaled

by assets.

JKP construction.

noa at Net operating assets scaled by assets (NOA/AT ). JKP construction.

noa gr1a Change in net operating assets 1-year

(NOAt/NOAt−12 − 1).

JKP construction.

o score Ohlson O-score (bankruptcy/distress probability mea-

sure).

Ohlson-style distress mea-

sures (JKP references).

oaccruals at Operating accruals scaled by assets

(OACCRUALS/AT ).

Sloan (1996) / Richardson

et al. (2005) family.

oaccruals ni Percent operating accruals (operating accruals scaled by

net income).

Hafzalla, Lundholm and

Van Winkle (2011).

ocf at Operating cash flow scaled by assets (OCF/AT ). Bouchaud, Krueger,

Landier and Thesmar

(2019) cited in JKP.

ocf at chg1 Change in operating cash flow to assets over 1 year

(OCFt/ATt −OCFt−12/ATt−12).

JKP construction.

Continued on next page
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Table A.1 – continued from previous page

Column 1 Column 2 Column 1

ocf me Operating cash flow scaled by market equity (OCF/ME). Desai, Rajgopal and

Venkatachalam (2004)

family.

op at Operating profit scaled by assets (OP/AT ). Ball et al. (2015/2016)

operating-profit family.

op atl1 Lagged operating profit scaled by lagged assets

(OPt−1/ATt−12).

JKP construction.

ope be Operating profit scaled by book equity (OP/BE). Fama and French / Ball et

al. lineage.

ope bel1 Operating profit scaled by lagged book equity. JKP construction.

opex at Operating expenses scaled by assets (OPEX/AT ). Novy-Marx (2011) / JKP.

pi nix Earnings before tax and extraordinary items scaled by

net income including extraordinary items (PI/NIX).

JKP construction.

ppeinv gr1a Change in PPE plus inventory 1-year scaled by assets

((PPEINVt − PPEINVt−12)/ATt−12).

JKP construction /

investment-change litera-

ture.

prc Stock price (PRC), typically adjusted close. CRSP/Compustat stan-

dard.

prc highprc 252d Price relative to 252-day high (PRC/max(PRC252d)). George and Hwang (2004)

style measure.

qmj Quality Minus Junk composite (aggregate of quality sig-

nals).

Asness, Frazzini and Ped-

ersen (2019).

qmj growth QMJ growth subcomponent (growth-related z-scores). Asness et al. (2019).

qmj prof QMJ profitability subcomponent (profitability z-scores). Asness et al. (2019).

qmj safety QMJ safety subcomponent (safety/z-score measures). Asness et al. (2019).

rd5 at R&D scaled to assets (5-year aggregated/averaged)

(R&D5/AT ).

Chan, Lakonishok and

Sougiannis (2001) family.

rd me R&D scaled by market equity (R&D/ME). Chan et al. (2001).

rd sale R&D scaled by sales (R&D/SALE). Chan et al. (2001).

resff3 12 1 Residual momentum: residuals from FF3, 12-month hori-

zon, scaled by residual std (JKP variant).

Blitz, Huij and Mertens

(2011) adjustments noted

in JKP.

resff3 6 1 Residual momentum: residuals from FF3, 6-month hori-

zon.

Blitz, Huij and Mertens

(2011).

ret 12 1 Price momentum: cumulative return t − 12 to t − 1 (12

months).

Jegadeesh and Titman

(1993) momentum family.

ret 12 7 Price momentum: cumulative return t− 12 to t− 7. JKP / momentum litera-

ture.

ret 1 0 Most recent monthly return (Rt−1→t). JKP / return family.

Continued on next page
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Table A.1 – continued from previous page

Column 1 Column 2 Column 1

ret 3 1 Cumulative return t− 3 to t− 1 (3 months). Momentum / JKP con-

struction.

ret 60 12 Long-horizon momentum/reversal: cumulative return t−
60 to t− 12.

Novy-Marx / De Bondt

and Thaler lines (JKP).

ret 6 1 Cumulative return t− 6 to t− 1 (6 months). Jegadeesh and Titman

(1993) family.

ret 9 1 Cumulative return t− 9 to t− 1 (9 months). JKP / momentum family.

rmax1 21d Maximum 1-day return within a 21-day window (max1d). JKP (Asness et al. style).

rmax5 21d Maximum 5-day return within a 21-day window (max5d). Asness et al. (2020) style.

rmax5 rvol 21d Highest 5-day return scaled by return volatility

(RMAX5/RV OL) over 21 days.

Asness et al. (2020) and

JKP.

rskew 21d Total return skewness over 21 days. Bali et al. (2016) family.

rvol 21d Return volatility (std) over 21 days. Ang, Engle, and colleagues

(JKP references).

sale bev Sales scaled by book enterprise value (SALE/BEV ). JKP construction.

sale emp gr1 Sales per employee growth (1-year) (SALE/EMP

growth).

Abarbanell and Bushee

(1998) lineage.

sale gr1 Sales 1-year growth (SALEt/SALEt−12 − 1). JKP construction.

sale gr3 Sales 3-year growth (SALEt/SALEt−36 − 1). JKP construction.

sale me Sales scaled by market equity (SALE/ME). JKP construction.

seas 11 15an Annual seasonality: average returns in months t − 11 to

t− 15 (annual lags).

Heston and Sadka (2008).

seas 11 15na Non-annual seasonality: months t − 11 to t − 15 non-

annual lags.

Heston and Sadka (2008).

seas 16 20an Annual seasonality: months t− 16 to t− 20 (annual). Heston and Sadka (2008).

seas 16 20na Non-annual seasonality: months t− 16 to t− 20. Heston and Sadka (2008).

seas 1 1an One-year lagged return (annual seasonality, month t−12). Heston and Sadka (2008).

seas 1 1na One-year non-annual seasonality (non-annual lag). Heston and Sadka (2008).

seas 2 5an Annual seasonality: months t− 2 to t− 5. Heston and Sadka (2008).

seas 2 5na Non-annual seasonality: months t− 2 to t− 5. Heston and Sadka (2008).

seas 6 10an Annual seasonality: months t− 6 to t− 10. Heston and Sadka (2008).

seas 6 10na Non-annual seasonality: months t− 6 to t− 10. Heston and Sadka (2008).

taccruals at Total accruals scaled by assets (TACCRUALS/AT ). Richardson, Sloan, Soli-

man and Tuna (2005).

taccruals ni Percent total accruals (total accruals scaled by net in-

come).

Hafzalla et al. (2011) and

JKP.

tangibility Asset tangibility measure (PPE and tangible asset share;

JKP formula).

Tangibility literature; JKP

construction.

tax gr1a Tax expense change 1-year scaled by assets (tax surprise). Thomas and Zhang (2011).

turnover 126d Share turnover averaged over 126 days (TURN126d). Liu (2006).

Continued on next page
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Column 1 Column 2 Column 1

turnover var 126d Volatility of turnover over 126 days (std). Chordia et al. (2001).

zero trades 126d Fraction of zero-trade days over 126 days. Lesmond et al. (1999).

zero trades 21d Fraction of zero-trade days over 21 days. Lesmond et al. (1999).

zero trades 252d Fraction of zero-trade days over 252 days. Lesmond et al. (1999).

Appendix B. Proofs

B.1. Proof of Proposition 1

Proof.

Step 1: Mean-variance frontier.

This proof works with the unit-investment frontier. Deriving the analytical expression

for the mean–variance frontier repeats the same procedure in Chapter 5 of Cochrane (2009).

For a given target return rp∗ , the variance is minimized by solving the following problem:

min
ω

ω′Σω s.t. ω′ι = 1, ω′µ = rp∗ (B.1)

where µ is the asset mean returns, Σ is the variance-covariance matrix, and ι is a vector of

ones. Set up the Lagrangian:

L =
1

2
ω′Σω − λ1ω

′ι− λ2 (ω
′µ− rp∗) (B.2)

The first-order condition is given by:

Σω = λ1ι+ λ2µ =
[
ι µ

] [λ1

λ2

]
=⇒ ω = Σ−1

[
ι µ

] [λ1

λ2

]
(B.3)

Premultiply equation (B.3) by

[
ι′

µ′

]
we have:[

ι′

µ′

]
ω =

[
1

rp∗

]
=

[
ι′

µ′

]
Σ−1

[
ι µ

] [λ1

λ2

]
(B.4)

Denote

A ≡

[
ι′

µ′

]
Σ−1

[
ι µ

]
=

[
ιΣ−1ι ιΣ−1µ

µΣ−1ι µΣ−1µ

]
≡

[
a b

b c

]
(B.5)
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where a = ιΣ−1ι, b = ιΣ−1µ, and c = µΣ−1µ.

Thus [
λ1

λ2

]
= A−1

[
1

rp∗

]
and ωp∗ = Σ−1

[
ι µ

]
A−1

[
1

r∗p

]
(B.6)

The variance of this efficient portfolio p∗ is:

σ2
p∗ = ω′

p∗Σωp∗

=
[
1 r∗p

]
A−1

[
ι

µ

]
Σ−1ΣΣ−1

[
ι µ

]
A−1

[
1

r∗p

]

=
[
1 r∗p

]
A−1

[
1

r∗p

]
=

a

ac− b2
(
ar2p∗ − 2brp∗ + c

)
(B.7)

Therefore, the mean-variance frontier corresponds to a parabola.

Step 2: Unit-investment, zero-beta portfolios with respect to an efficient portfolio p∗.

The covariance between an arbitrary portfolio j and an efficient portfolio p∗ is given by:

σj,p∗ = ω′
jΣωp∗ = ω′

j

[
ι µ

]
A−1

[
1

r∗p

]
=
[
1 rj

]
A−1

[
1

r∗p

]
= c− brp∗ + (arp∗ − b) rz (B.8)

Here, the third equality follows from ω′
jι = 1, since portfolio j is assumed to be a unit-

investment portfolio. According to equation (B.8), if portfolio j is zero-beta (i.e., has zero

covariance) with respect to the efficient portfolio p∗, then σj,p∗ = 0 implies

rj = rf =
c− brp∗

b− arp∗
(B.9)

given that rp∗ ̸= b/a where b/a is the return of the GMV portfolio.22 Since the efficient Tan-

gent portfolio p∗ is unique, the corresponding zero-beta rate is also unique. Specifically, under

a correctly specified factor model, there exists a factor portfolio p∗ on the mean–variance

frontier, and all zero-beta portfolios with respect to p∗ must have the same expected return.

Thus, the zero-beta rate is uniquely identified and corresponds to the frictionless risk-free

22Throughout the proof, I maintain the assumption that the efficient portfolio p∗ lies above the GMV
portfolio.
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rate in the economy. This establishes Proposition 1 (i).

Step 3: Unit-investment, zero-beta portfolios with respect to an arbitrary portfolio p.

For unit-investment, zero-beta portfolios with respect to an arbitrary portfolio p targeting

an expected return rz, we solve the following problem:

min
ω

ω′Σω s.t. ω′ι = 1, ω′µ = rz, ω′Σωp = 0 (B.10)

Set up the Lagrangian:

L =
1

2
ω′Σω − λ1ω

′ι− λ2 (ω
′µ− rz)− λ3ω

′Σωp (B.11)

The first-order condition is given by:

Σω = λ1ι+ λ2µ+ λ3Σωp =
[
ι µ Σωp

]λ1

λ2

λ3



=⇒ ω = Σ−1
[
ι µ Σωp

]λ1

λ2

λ3

 (B.12)

Premultiply equation (B.12) by

 ι′

µ′

ω′
pΣ

 we have:

 ι′

µ′

ω′
pΣ

ω =

 1

rz

0

 =

 ι′

µ′

ω′
pΣ

Σ−1
[
ι µ Σωp

]λ1

λ2

λ3

 (B.13)

Denote

H ≡

 ι′

µ′

ω′
pΣ

Σ−1
[
ι µ Σωp

]
=

a b 1

b c rp

1 rp σ2
p

 =

 A
1

rp

1 rp σ2
p

 (B.14)

Thus λ1

λ2

λ3

 = H−1

 1

rp

0

 and ωz = Σ−1
[
ι µ Σωp

]
H−1

 1

rz

0

 (B.15)
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where I denote ωz as the weights of a portfolio z that is orthogonal to p.

The variance of the unit-investment, zero-beta portfolio z is given by:

σ2
z = ω′

zΣωz

=
[
1 rz 0

]
H−1

 ι′

µ′

ω′
pΣ

Σ−1ΣΣ−1
[
ι µ Σωp

]
H−1

 1

rz

0



=
[
1 rz 0

]
H−1

 1

rz

0


(B.16)

To understand the relationship between σz and rz, H
−1 needs to be calculated. I start by

expressing the Schur complement of A:

S = σ2
p −

[
1 rp

]
A−1

[
1

rp

]
= σ2

p −
a

ac− b2
(
ar2p − 2brp + c

)
(B.17)

Recall from equation (B.7) that the variance of an efficient portfolio p∗ is σ2
p∗ =

a

ac− b2
(
ar2p∗ − 2brp∗ + c

)
.

Hence, if we assume the arbitrary portfolio p has the same expected return as the efficient

portfolio p∗: rp = rp∗ . Then,
a

ac− b2
(
ar2p − 2brp + c

)
= σ2

p∗ , and the Schur complement

S = σ2
p − σ2

p∗ , which measures the horizontal distance between portfolio p and p∗ with the

same expected return.

Note that:

|H| = acσ2
p + 2brp − c− ar2p − b2σ2

p

=
1

σ2
p

[ (
aσ2

p − 1
)︸ ︷︷ ︸

≡az

(
cσ2

p − r2p
)︸ ︷︷ ︸

≡cz

−
(
bσ2

p − rp
)2︸ ︷︷ ︸

≡bz

]
=

1

σ2
p

(
azcz − b2z

) (B.18)

Hence, we can compute H−1:

H−1 =
σ2
p

azcz − b2z

 cz −bz brp − c

−bz az b− arp

brp − c b2 − ac ac− b2

 (B.19)

Substitute H−1 into equation (B.16) we obtain:

55



σ2
z =

[
1 rz 0

]
H−1

 1

rz

0

 =
σ2
p

azcz − b2z

(
azr

2
z − 2bzrz + cz

)
(B.20)

Hence, the unit-investment, zero-beta frontier is characterized by a parabola. The unit-

investment, zero-beta portfolios can attain infinitely many expected returns, rendering the

zero-beta rate indeterminate and unidentified. This establishes Proposition 1 (ii).

B.2. Proof of Proposition 2

Proof.

This proposition explores the relation between portfolio inefficiency and the level of the

estimated zero-beta rate from the unit-investment, minimum-variance zero-beta portfolio.

Recall from equation (B.20) that the zero-beta frontier with respect to an inefficient portfolio

p is σ2
z =

σ2
p

azcz − b2z
(ar2z − 2brz + c). The variance is minimized at

rz =
bz
az

=
bσ2

p − rp

aσ2
p − 1

(B.21)

=
b/a · σ2

p − 1/a · rp
σ2
p − 1/a

(B.22)

=
rGMV · σ2

p − σ2
GMV · rp

σ2
p − σ2

GMV

(B.23)

= rGMV − σ2
GMV

rp − rGMV

σ2
p − σ2

GMV

(B.24)

where rz is the estimated zero-beta rate, rGMV = b/a, and σ2
GMV = 1/a.

For the tangency portfolio p∗, recall from Appendix B.1 Step 2 that rf =
c− brp∗

b− arp∗
.

Combined with the MVF formula, σ2
p∗ =

a

ac− b2
(
ar2p∗ − 2brp∗ + c

)
, it can be shown that

rf =
bz
az

=
bσ2

p∗ − rp∗

aσ2
p∗ − 1

= rGMV − σ2
GMV

rp∗ − rGMV

σ2
p∗ − σ2

GMV

(B.25)

Relationships between rGMV , rf , and rz

First, let rGMV − σ2
GMV

rp − rGMV

σ2
p − σ2

GMV

= rf , we have:
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rp − rGMV

σ2
p − σ2

GMV

=
rGMV − rf

σ2
GMV

(B.26)

Rearrange equation (B.24) and (B.25) we know:

rp − rGMV

σ2
p − σ2

GMV

=
rp − rz
σ2
p

,
rGMV − rf

σ2
GMV

=
rp∗ − rf

σ2
p∗

(B.27)

Graphically, this means that in the mean-variance diagram (µ-σ2), a line crossing GMV

and p∗ intersects with the vertical axis at rf , and a line crossing GMV and p intersects with

the vertical axis at rz. Hence, rz ≥ rf if and only if (rp − rz)/σ
2
p ≤ (rp∗ − rf )/σ

2
p∗ .

Lastly, equation (B.24) implies that rz > rGMV if and only if rp < rGMV .

Zero-Beta Rate and Portfolio Inefficiency

I separately consider two types of portfolio inefficiency.

(1) Risk inefficiency, holding the mean return fixed (rp = rp∗, σ
2
p > σ2

p∗).

Consider the derivative:
drz
dσ2

p

=
arp − b(
aσ2

p − 1
)2 . Assuming that portfolio p lies above the

GMV portfolio, rp > rgmv = b/a, we know
drz
dσ2

p

> 0. Hence, rz increases with the σ2
p, holding

the mean return fixed. Since σ2
p > σ2

p∗ , we have rz > r∗z .

(2) Return inefficiency, holding the volatility fixed (σp = σp∗, rp < rp∗).

Consider the derivative:
drz
drp

= − 1

aσ2
p − 1

. In this case,
drz
drp

< 0 holds unambiguously

since σp > 1/a = σgmv. Hence, rz increases as rp falls, holding the volatility fixed. Finally,

compute rz − r∗z =
rp∗ − rp
aσ2

p − 1
> 0.

B.3. Proof of Proposition 3

Proof.

Step 1: Mean-variance frontier.

This proof works with the zero-investment frontier, as opposed to unit-investment fron-

tier. Deriving the analytical expression for the mean–variance frontier follows a procedure

similar to that in Chapter 5 of Cochrane (2009). For a given target return rp∗ , the variance

is minimized by solving the following problem:

min
ω

ω′Σω s.t. ω′ι = 0, ω′µ = rp∗ (B.28)
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where µ is the asset mean returns, Σ is the variance-covariance matrix, and ι is a vector of

ones. Set up the Lagrangian:

L =
1

2
ω′Σω − λ1ω

′ι− λ2 (ω
′µ− rp∗) (B.29)

The first-order condition is given by:

Σω = λ1ι+ λ2µ =
[
ι µ

] [λ1

λ2

]
=⇒ ω = Σ−1

[
ι µ

] [λ1

λ2

]
(B.30)

Premultiply equation (B.30) by

[
ι′

µ′

]
we have:[

ι′

µ′

]
ω =

[
0

rp∗

]
=

[
ι′

µ′

]
Σ−1

[
ι µ

] [λ1

λ2

]
(B.31)

Denote

A ≡

[
ι′

µ′

]
Σ−1

[
ι µ

]
=

[
ιΣ−1ι ιΣ−1µ

µΣ−1ι µΣ−1µ

]
≡

[
a b

b c

]
(B.32)

where a = ιΣ−1ι, b = ιΣ−1µ, and c = µΣ−1µ.

Thus [
λ1

λ2

]
= A−1

[
0

rp∗

]
and ωp∗ = Σ−1

[
ι µ

]
A−1

[
0

r∗p

]
(B.33)

The variance of this efficient portfolio p∗ is:

σ2
p∗ = ω′

p∗Σωp∗

=
[
0 r∗p

]
A−1

[
ι

µ

]
Σ−1ΣΣ−1

[
ι µ

]
A−1

[
0

r∗p

]

=
[
0 r∗p

]
A−1

[
0

r∗p

]
=

a

ac− b2
r2p∗

(B.34)

Therefore, the mean-variance frontier can be expressed as rp∗ =

√
|ac− b2|

a
σp∗ , which cor-
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responds to a straight line emanating from the origin.

Step 2: Zero-beta portfolios with respect to an efficient portfolio p∗.

The covariance between an arbitrary portfolio j and an efficient portfolio p∗ is given by:

σj,p∗ = ω′
jΣωp∗ = ω′

j

[
ι µ

]
A−1

[
0

r∗p

]
=
[
0 rj

]
A−1

[
0

r∗p

]
=

a

ac− b2
rjrp∗ (B.35)

Here, the third equality follows from ω′
jι = 0, since portfolio j is assumed to be a zero-

investment portfolio. According to equation (B.35), if portfolio j is zero-beta (i.e., has zero

covariance) with respect to the efficient portfolio p∗, then σj,p∗ = 0 implies rj = 0, given that

a ̸= 0 and rp∗ ̸= 0. This establishes Proposition ?? (i). Specifically, if the factor model is

correctly specified, there exists a factor portfolio p∗ on the mean–variance frontier, and all

zero-beta portfolios with respect to p∗ must have zero expected returns.

Step 3: Zero-beta portfolios with respect to an arbitrary portfolio p.

For zero-investment, zero-beta portfolios with respect to an arbitrary portfolio p targeting

an expected return rz, we solve the following problem:

min
ω

ω′Σω s.t. ω′ι = 0, ω′µ = rz, ω′Σωp = 0 (B.36)

Set up the Lagrangian:

L =
1

2
ω′Σω − λ1ω

′ι− λ2 (ω
′µ− rz)− λ3ω

′Σωp (B.37)

The first-order condition is given by:

Σω = λ1ι+ λ2µ+ λ3Σωp =
[
ι µ Σωp

]λ1

λ2

λ3



=⇒ ω = Σ−1
[
ι µ Σωp

]λ1

λ2

λ3

 (B.38)

Premultiply equation (B.38) by

 ι′

µ′

ω′
pΣ

 we have:
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 ι′

µ′

ω′
pΣ

ω =

 0

rz

0

 =

 ι′

µ′

ω′
pΣ

Σ−1
[
ι µ Σωp

]λ1

λ2

λ3

 (B.39)

Denote

H ≡

 ι′

µ′

ω′
pΣ

Σ−1
[
ι µ Σωp

]
=

a b 0

b c rp

0 rp σ2
p

 =

 A
0

rp

0 rp σ2
p

 (B.40)

Thus λ1

λ2

λ3

 = H−1

 0

rp

0

 and ωz = Σ−1
[
ι µ Σωp

]
H−1

 0

rz

0

 (B.41)

where I denote ωz as the weights of a portfolio z that is orthogonal to p.

The variance of the zero-beta portfolio z is given by:

σ2
z = ω′

zΣωz

=
[
0 rz 0

]
H−1

 ι′

µ′

ω′
pΣ

Σ−1ΣΣ−1
[
ι µ Σωp

]
H−1

 0

rz

0



=
[
0 rz 0

]
H−1

 0

rz

0


(B.42)

To understand the relationship between σz and rz, H
−1 needs to be calculated. I start by

expressing the Schur complement of A:

S = σ2
p −

[
0 rp

]
A−1

[
0

rp

]
= σ2

p −
a

ac− b2
r2p (B.43)

Recall from equation (B.34) that the variance of an efficient portfolio p∗ is σ2
p∗ =

a

ac− b2
r2p∗ .

Hence, if we assume the arbitrary portfolio p has the same expected return as the efficient

portfolio p∗: rp = rp∗ . Then,
a

ac− b2
r2p =

a

ac− b2
r2p∗ = σ2

p∗ , and the Schur complement

S = σ2
p − σ2

p∗ , which measures the horizontal distance between portfolio p and p∗ with the

same expected return.

Note that:
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|H| = acσ2
p − ar2p − b2σ2

p

= (ac− b2)σ2
p − ar2p

= (ac− b2)σ2
p − (ac− b2)σ2

p∗

= (ac− b2)(σ2
p − σ2

p∗)

(B.44)

Hence, we can compute H−1:

H−1 =
1

(ac− b2)(σ2
p − σ2

p∗)

cσ
2
p − r2p −bσ2

p brp

−bσ2
p aσ2

p arp

brp arp ac− b2

 (B.45)

Substitute H−1 into equation (B.42) we obtain:

σ2
z =

[
0 rz 0

]
H−1

 0

rz

0

 =
aσ2

p

(ac− b2)(σ2
p − σ2

p∗)
r2z (B.46)

Define the zero-beta frontier with respect to an arbitrary portfolio p as the set of zero-beta

portfolios for p that minimize variance for a given level of mean return. Then, the zero-beta

frontier can be expressed as:

rz =

√
(ac− b2)(σ2

p − σ2
p∗)

aσ2
p

σz =

√
1−

σ2
p∗

σ2
p

√
ac− b2

a
σz (B.47)

From Equation (B.34) we know that the maximum Sharpe ratio of all assets is SR2(p∗) =(
rp∗

σ2
p∗

)2

=
ac− b2

a
. Thus, we compute the slope of the zero-investment, zero-beta frontier:

Sz =
rz
σz

=

√
1−

σ2
p∗

σ2
p

√
ac− b2

a
(B.48)

=

√
1−

r2p∗/σ
2
p∗

r2p/σ
2
p

√
ac− b2

a
(B.49)

=

√
1−

(
SR2(p∗)

SR2(p)

)2

SR2(p∗) (B.50)

=
√

SR2(p∗)− SR2(p) (B.51)

where SR2(p∗) denotes the Sharpe ratio of the efficient portfolio p∗ and SR2(p) denotes the
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Sharpe ratio of the inefficient portfolio p. Therefore, the slope of the zero-investment, zero-

beta frontier—maximum Sharpe ratio attainable by zero-investment, zero-beta portfolios—

quantifies how much a portfolio’s Sharpe ratio falls short of the optimal. Therefore, it

provides a measure of model misspecification.

To complete Proposition 3, it remains to show that the slope of the asymptote for the

unit-investment, zero-beta frontier equals the slope of the zero-investment, zero-beta frontier.

Equivalence of Slopes

First of all, I conjecture that any unit-investment, zero-beta portfolio weights wz,u can

be decomposed into two orthogonal components:

wz,u = wz,mv + wz (B.52)

where wz,mv denotes the unit-investment, minimum-variance zero-beta portfolio weights, and

wz denotes the zero-investment, zero-beta portfolio weights. Let me check the constraints

and confirm this conjecture.

Investment constraints hold: ι′wz,u = 1 = ι′wz,mv + ι′wz = 1 + 0. Zero-beta constraints

hold: β′wz,u = 0K = β′wz,mv + β′wz = 0K + 0K . Hence, any zero-investment, zero-beta

portfolio corresponds to a unit-investment, zero-beta portfolio. The weights shift is the

weights of the unit-investment, minimum-variance zero-beta portfolio.

Similar to the property that the GMV portfolio is orthogonal to any zero-investment

portfolio (ωgmv
′Σωz ∝ ι′Σ−1Σωz = ι′ωz = 0), the unit-investment, minimum-variance

zero-beta portfolio is orthogonal to any zero-investment, zero-beta portfolio. This is proved

using Equation (3):

w′
z,mvΣwz =

[
1 0′

K

]([ ι′
β′

]
Σ−1

[
ι β

])−1

︸ ︷︷ ︸
C

·

[
ι′

β′

]
Σ−1Σωz (B.53)

= C ·

[
ι′

β′

]
ωz (B.54)

= C · 0K+1 (B.55)

= 0 (B.56)

Due to the orthogonal decomposition, we know returns rz,u = rz,mv + rz and variances:

σ2
z,u = σ2

z,mv + σ2
z .

From the previous procedure, we know that the zero-investment, zero-beta frontier is a

straight line with slope Sz. The formula for this frontier can be written as rz = Sz ·σz. Since
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this frontier corresponds to the unit-investment, zero-beta hyperbola frontier, we can simply

write the formula for the hyperbola as (rz,u − rz,mv)
2 = S2

z ·
(
σ2
z,u − σ2

z,mv

)
.

According to the properties of a hyperbola, the slope of the asymptote is exactly Sz.

Now we complete the proofs of Proposition 3.

B.4. Proof of Proposition 4

Proof.

We start with the formula for the tangency portfolio return, r∗p:

r∗p =
c− brf
b− arf

(B.57)

We can rewrite this using rgmv = b/a, a = 1/σ2
gmv, and b = rgmv/σ

2
gmv.

r∗p =
c/a− (b/a)rf

b/a− rf
=

c/a− rgmvrf
rgmv − rf

(B.58)

Rearranging this gives:

r∗p(rgmv − rf ) = c/a− rgmvrf (B.59)

We add and subtract r2gmv to the right-hand side:

r∗p(rgmv − rf ) = (c/a− r2gmv) + r2gmv − rgmvrf (B.60)

r∗p(rgmv − rf ) = (c/a− r2gmv) + rgmv(rgmv − rf ) (B.61)

Isolating the first term on the right (this is the step seen in the note):

(r∗p − rgmv)(rgmv − rf ) = c/a− r2gmv (B.62)

Now we show that c/a− r2gmv = S2σ2
gmv:

c/a− r2gmv =
c

a
−
(
b

a

)2

=
ac− b2

a2
(B.63)

Using our definitions S2 = ac−b2

a
and σ2

gmv =
1
a
, we have:

ac− b2

a2
=

(
ac− b2

a

)(
1

a

)
= S2σ2

gmv (B.64)

This gives us the central identity:
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(r∗p − rgmv)(rgmv − rf ) = S2σ2
gmv (B.65)

We apply our empirical assumption S2 ≥ L2 to the identity:

(r∗p − rgmv)(rgmv − rf ) ≥ L2σ2
gmv (B.66)

Assuming rgmv > rf , we can divide by (rgmv − rf ):

r∗p − rgmv ≥
L2σ2

gmv

rgmv − rf
(B.67)

Add (rgmv − rf ) to both sides to get the total tangency premium:

(r∗p − rgmv) + (rgmv − rf ) ≥ (rgmv − rf ) +
L2σ2

gmv

rgmv − rf
(B.68)

r∗p − rf ≥ rgmv − rf +
L2σ2

gmv

rgmv − rf
(B.69)

This proves the first part of the proposition.

This part is a direct application of the Arithmetic Mean-Geometric Mean (AM-GM)

inequality, which states that for any non-negative A and B, A+B ≥ 2
√
AB.

Let A = (rgmv − rf ) and B =
L2σ2

gmv

rgmv−rf
.

rgmv − rf +
L2σ2

gmv

rgmv − rf
≥ 2

√
(rgmv − rf ) ·

(
L2σ2

gmv

rgmv − rf

)
(B.70)

The (rgmv − rf ) terms inside the square root cancel out:

≥ 2
√
L2σ2

gmv (B.71)

≥ 2Lσgmv (B.72)

This proves the second part of the proposition.

Conclusion: We have shown that by combining the standard geometry of the mean-

variance frontier with an empirical lower bound L on the maximum zero-beta Sharpe ratio,

we arrive at the full inequality:

rp∗ − rf ≥ rgmv − rf +
σ2
gmvL

2

rgmv − rf
≥ 2σgmvL (B.73)
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B.5. Minimum-Variance Market-Neutral Portfolio Weights

Proof.

Solve the following variance minimization problem:

min
ω

ω′Σω s.t. ω′ι = 1, ω′Σωp∗ = 0 (B.74)

Set up the Lagrangian:

L =
1

2
ω′Σω − λ1ω

′ι− λ2ω
′Σωp∗ (B.75)

The first-order condition is given by:

Σω = λ1ι+ λ2Σωp∗ =⇒ ω = λ1Σ
−1ι+ λ2ωp∗ (B.76)

From ω′ι = 1, we have:

λ1ι
′Σ−1ι+ λ2ι

′ωp∗ = 1 =⇒ λ1 =
1− λ2ι

′ωp∗

ι′Σ−1ι
(B.77)

Note that the weights for global minimum variance (GMV) portfolio is:

ωgmv =
Σ−1ι

ι′Σ−1ι
(B.78)

Thus,

ω = (1− λ2ι
′ωp∗)ωgmv + λ2ωp∗ (B.79)

Now impose the orthogonality condition:

ω′Σωp∗ = 0 = [(1− λ2ι
′ωp∗)ωgmv + λ2ωp∗ ]

′
Σωp∗

=⇒ λ2 =
ω′

gmvΣωp∗

(ι′ωp∗)ω′
gmvΣωp∗ − ω′

p∗Σωp∗

In summary,

ω = (1− κι′ωp∗)ωgmv + κωp∗ , where κ =
ω′

gmvΣωp∗

(ι′ωp∗)ω′
gmvΣωp∗ − ω′

p∗Σωp∗
(B.80)
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B.6. Proof of Equation (3)

Proof.

Solve the following variance minimization problem:

min
ω

ω′Σω s.t. ω′ι = 1, ω′β = 0K (B.81)

where Σ is the variance-covariance matrix, ι is a vector of ones, β is a K×1 vector of betas,

and 0K is a K × 1 vector of zeros. Set up the Lagrangian:

L =
1

2
ω′Σω − λ1ω

′ι− λ2ω
′β (B.82)

The first-order condition is given by:

Σω = λ1ι+ λ2β =
[
ι β

] [λ1

λ2

]
=⇒ ω = Σ−1

[
ι β

] [λ1

λ2

]
(B.83)

Premultiply equation (B.38) by

[
ι′

β′

]
we have:

[
ι′

β′

]
ω =

[
1

0K

]
=

[
ι′

β′

]
Σ−1

[
ι β

] [λ1

λ2

]
(B.84)

=⇒

[
λ1

λ2

]
=

([
ι′

β′

]
Σ−1

[
ι β

])−1 [
1

0K

]
(B.85)

Thus,

ω∗
z = Σ−1

[
ι β

]([ ι′
β′

]
Σ−1

[
ι β

])− [
1

0K

]
(B.86)

B.7. Proof of Equation (15)

Proof. Recall from Equation (B.20) that the unit-investment, zero-beta frontier with respect

to portfolio p is

σ2
z =

σ2
p

azcz − b2z

(
azr

2
z − 2bzrz + cz

)
(B.87)
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The slope of the asymptote is

S2
z =

azcz − b2z
azσ2

p

(B.88)

Since az = aσ2
p − 1, bz = bσ2

p − rp, and cz = cσ2
p − r2p, let’s rearrange the denominato:

azcz − b2z = (aσ2
p − 1)(cσ2

p − r2p)− (bσ2
p − rp)

2 (B.89)

= acσ3
p + 2brp − c− ar2p − b2σ2

p (B.90)

= σ2
p(σ

2
p∗ − σ2

p)(ac− b2) (B.91)

Hence, the slope of the asymptote can be expressed as (using σ2
GMV = 1/a):

S2
z =

azcz − b2z
azσ2

p

(B.92)

=
σ2
p(σ

2
p − σ2

p∗)(ac− b2)

σ2
p(aσ

2
p − 1)

(B.93)

=
ac− b2

a

σ2
p∗ − σ2

p

σ2
p − σ2

GMV

(B.94)

=
ac− b2

a

[
1−

σ2
p∗ − σ2

GMV

σ2
p − σ2

GMV

]
(B.95)

This completes the proof of Equation (15).

Appendix C. Additional Analysis on Zero-Beta Rate Estimation

C.1. Test-Optimization Approach of Zero-Beta Rate Estimation

I summarize the existing zero-beta rate estimation methods into three categories: the

regression approach, the test-optimization approach, and the zero-beta portfolio approach.

The basic idea of the test-optimization approach is to optimally solve for a zero-beta rate

that makes the given factor model perform as well as possible when subjected to formal tests.

The idea originates with Kandel (1984), Kandel (1986), and Shanken (1986). These papers

construct the likelihood function of the data subject to the model restrictions and then solve

for the zero-beta rate that maximizes the constrained likelihood. Equivalently, the estimate

can be seen as minimizing the relevant test statistic—variants of the likelihood ratio test

(LRT) used across the papers. Intuitively, the zero-beta rate is “tilted” just enough to make

the model look as good as it possibly can in sample. Velu and Zhou (1999) uses GMM to
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estimate the zero-beta rate that makes the model’s pricing errors as small as possible. More

recently, Ferson et al. (2025) shows that the same logic implies choosing the zero-beta rate

that minimizes the gap between the maximum squared Sharpe ratio attainable with the test

assets and that implied by the model’s factors:

λ̂∗
0 = max

λ0

L(λ0) = min
λ0

LRT (λ0) = min
λ0

ε′Wε = min
λ0

(
SR2(r, f)− SR2(f)

)
(C.1)

The first equality corresponds to the constrained likelihood maximization in Kandel (1984,

1986), the second to the test-statistic minimization in Shanken (1986), the third to the

pricing errors (ε) minimization with a GMM framework in Velu and Zhou (1999), and the

fourth to the Sharpe ratio criterion in Ferson et al. (2025). Put differently, the zero-beta rate

estimate is chosen to make the model’s factors lie as close as possible to the mean–variance

frontier of returns.

Instead of looking for a single value of the zero-beta rate and then calculating the a

standard error arount it, Beaulieu et al. (2013, 2023, 2025) ask a different question: “For

which possible values of the zero-beta rate would a hypothesis test fail to reject the given

factor model at a given significance level?” The set of all such “non-rejected” values forms

the confidence interval of the zero-beta rate.

In summary, the test-optimization approach does not so much validate the model as reveal

the most “forgiving” estimate of the zero-beta rate consistent with the data. However, forcing

the factor model to be accepted—or to fit the data as perfectly as possible—may impose an

overly strong assumption.

C.2. Zero-Beta Rate Contour Curves in the Mean-Variance Diagram

Equation (6) provides the formula for the expected return (rz) of the minimum-variance

zero-beta portfolio with respect to the factor model benchmark portfolio p. In the mean-

variance diagram, the zero-beta rate contour curves are straight lines according to equation

(6). The space of inefficient portfolios can be divided into three regions, as illustrated in

Figure C.1. If portfolio p lies in region I, then the estimated zero-beta rate is downward

biased relative to the true unobserved risk-free rate (rz < rf ). If portfolio p lies below the

GMV portfolio in region III, then the zero-beta rate is higher than the GMV portfolio return

(rz > rGMV ). If portfolio p lies in region II, then the zero-beta rate is upward biased relative

to the true risk-free rate and it is lower than the GMV portfolio return (rf < rz < rGMV ).

Therefore, rz could be downward biased or upward biased relative to rf depending on the

location of portfolio p. rz may also be exactly equal to the unobserved rf if the factor model
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Figure. C.1. Zero-Beta Rate Contour Lines and Portfolio Inefficiency

Notes: This figure illustrates the estimated zero-beta rate contour lines in mean–variance space.
The black hyperbola represents the mean–variance frontier. Portfolios located on the blue solid
contour line imply a zero-beta rate equal to the true risk-free rate. This line extends leftward and
intersects the vertical axis at rf . Portfolios lying on the same blue dashed contour line imply an
identical zero-beta rate, corresponding to the intercept on the vertical axis if the line were
extended leftward (not shown). The space of inefficient portfolios can be divided into three
regions. If portfolio p lies in region I, then rz < rf ; if it lies in region II, then rf < rz < rGMV ;
and if it lies in region III, then rz > rGMV .

happens to be lying on the boundary of region I and II, where (rp − rf )/σ
2
p = (rp∗ − rf )/σ

2
p∗ .

This boundary is shown as the blue solid contour line in Figure 2. This line extends leftward

and intersects the vertical axis at rf . In addition, 2 plots other zero-beta rate contour

lines, where portfolios lying on the same blue dashed line imply an identical zero-beta rate,

corresponding to the intercept on the vertical axis if the line were extended leftward (not

shown).

C.3. Zero-Beta Rate and Portfolio Inefficiency

Proposition 2 (ii) explores how portfolio inefficiency impacts the associated zero-beta

rate estimation. Here, I illustrate the results in a hypothetical mean-variance space by

investigating two distinct types of portfolio inefficiency. In Figure C.2 (risk inefficiency), I fix

the expected return for inefficient portfolios (rp∗ = rp1 = rp2) and progressively increase their

volatilities (σ2
p∗ < σ2

p1
< σ2

p2
). Here, p∗ represents the efficient portfolio on the mean-variance
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Figure. C.2. Zero-Beta Rate and Portfolio Inefficiency (Constant Mean)

Notes: This figure shows the relations between portfolio inefficiency and the level of estimated
zero-beta rate in the mean-standard deviation diagram. Holding the mean return constant, the
estimated zero-beta rate rises with the volatility of the inefficient portfolio p. Panel (b) holds the
volatility constant, the estimated zero-beta rate rises as the mean return of p falls.

frontier (MVF), while p1 and p2 have the same return but excess, uncompensated risk. This

panel shows how the zero-beta frontier and its minimum variance zero-beta portfolio shift

as the reference portfolio moves horizontally away from the efficient frontier. Holding the

mean return fixed, the estimated zero-beta rate (expected return of the minimum-variance

zero-beta portfolio) rises with the volatility of the inefficient portfolio p. In Figure C.3

(return inefficiency), I fix the volatility for inefficient portfolios (σ2
p∗ = σ2

p1
= σ2

p2
) and

progressively decrease their expected return (rp∗ > rp1 > rp2). Here, p
∗ again represents the

efficient increase, while p1 and p2 take on the same amount of risk for a lower reward. This

panel shows how the zero-beta frontier and its minimum variance zero-beta portfolio shift

as the reference portfolio moves vertically downward from the efficient frontier. Holding the

volatility fixed, the estimated zero-beta rate rises as the mean return of p falls.

70



Figure. C.3. Zero-Beta Rate and Portfolio Inefficiency (Constant Volatility)

Notes: This figure shows the relations between portfolio inefficiency and the level of estimated
zero-beta rate in the mean-standard deviation diagram. Holding the volatility constant, the
estimated zero-beta rate rises as the mean return of p falls.

C.4. Instrumented PCA (IPCA) Estimation

I estimate IPCA models following Kelly et al. (2019):

ri,t+1 = α(zi,t) + β(zi,t)
′ft+1 + εi,t+1 (C.2)

α(zi,t) = z′i,tΓα + να,i,t (C.3)

β(zi,t) = z′i,tΓβ + νβ,i,t (C.4)

where ri,t+1 is the total return of stock i, ft+1 is a K-dimensional vector of factors, α(zi,t) and

β(zi,t) denote the intercept and risk loadings, modeled as linear functions of the 136 stock

characteristics, zi,t. να,i,t and νβ,i,t represents components in α and β that are orthogonal to

characteristics. Substitute Equations (C.3) and (C.4) into (C.2), we have:

ri,t+1 = z′i,t (Γα + Γβft+1) + ε̃i,t+1 (C.5)

where ε̃i,t+1 = εi,t+1 + να,i,t + νβ,i,tft+1 is a composite error term. Denote the N × 1 total

return vector as rt+1, the N × 1 composite error vector as ε̃t+1, and the N × C (C = 136)
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Table C.1: IPCA Model Performance and Alphas

Panel A: Zero-Investment Managed Portfolios

1 3 6 9

Total R2 (%) 66.5 91.3 95.2 96.8

Wα p-value (%) 0.00 0.00 25.2 32.6

E[αp,t] (Annualized, %) 0.16 0.32 0.40 0.53

Panel B: Unit-Investment Characteristic-Sorted Portfolios

1 3 6 9

Total R2 (%) 75.4 93.1 94.4 95.3

E[αp,t] (Annualized, %) 7.07 11.13 9.74 4.33

Notes: Panel A reports total R2’s, Wald test p-values for H0 : Γα = 0, average alphas across

portfolios and time, E[αp,t], where αp,t is an element of the portfolio alpha vector

αp = Z′
tZtΓα/Nt using zero-investment managed portfolios, Xt+1 ≡ Zt+1rt+1/Nt+1. Panel B

reports total R2’s and average alphas across portfolios and time, E[αp,t], where αp,t is an element

of the portfolio alpha vector αp = ω′
tZtΓα and ωt denotes the unit-investment portfolio weights.

stock characteristics matrix as Zt+1. Then, the vector form of an IPCA model is:

rt+1 = Zt+1 (Γα + Γβft+1) + ε̃t+1 (C.6)

The optimization objective is to minimize the sum of squared model composite errors:

min
Γα,Γβ ,ft+1

T∑
t=1

(
rt+1 − Zt+1Γα − Zt+1Γβft+1

)′(
rt+1 − Zt+1Γα − Zt+1Γβft+1

)
(C.7)

The first-order conditions (F.O.C.) for this problem are:

f̂t+1 =

(
Γ̂′
βZ

′
t+1Zt+1Γ̂β

)−1

Γ̂′
βZ

′
t+1

(
rt+1 − Zt+1Γ̂α

)
(C.8)

vec(Γ̂′) =

( T∑
t=1

(Z′
t+1Zt+1)⊗ (f̃t+1f̃

′
t+1)

)−1( T∑
t=1

(
Z′

t+1 ⊗ f̃t+1

)
rt+1

)
(C.9)

where I denote Γ ≡ [Γα Γβ] and f̃t+1 ≡ [1 f ′t+1]
′. These system of equations are solved

numerically using the Alternative Least Squares (ALS) algorithm.
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Kelly et al. (2019) presents a managed-portfolio interpretation of IPCA. The estimated

IPCA factors and parameters can also be viewed as minimizing the pricing errors of managed

portfolio returns, which are constructed as weighted averages of individual stock returns

interacted with instruments: Xt+1 ≡ Zt+1rt+1/Nt+1, where Nt+1 denotes the number of non-

missing stock returns at time t + 1. After estimating the model parameters, Kelly et al.

(2019) proceeds to test whether alphas arise as a function of characteristics: H0 : Γα = 0. I

follow the same bootstrap procedure to compute the p-values of this test.

Table C.1 Panel A reports total R2 values and Wald test p-values for H0 : Γα = 0 using

the zero-investment managed portfolios X with 1, 3, 6, and 9 IPCA factors. Consistent

with Kelly et al. (2019), the IPCA models explain portfolio return variation well, with total

R2 values exceeding 66%. With more than six factors, the Wald test p-values rise above

1%, leading to a failure to reject Γα = 0 at the 1% level. For the zero-investment managed

portfolios, I compute the average alphas across portfolios and time, E[αp,t], where αp,t is an

element of the portfolio alpha vector αp = Z′
tZtΓα/Nt. These average alphas range from

0.16% to 0.53% on an annualized basis, suggesting that characteristic-related mispricings are

small in such zero-investment managed portfolios.

Note that each stock characteristic vector zi,t+1 is rank-normalized to the (−1, 1) interval,

with elements summing to zero. This normalization ensures that the managed portfolios are

zero-investment portfolios, where the risk-free (zero-beta) rate cancels out. As an alternative

investigation, I construct 273 unit-investment characteristic-sorted portfolios based on the

portfolio weights (see Section 3.1) and use the estimated Γα and Γβ to assess IPCA model

performance. Table C.1 Panel B reports total R2 values for these portfolios, which are

similar to those in Panel A. More importantly, for unit-investment portfolios, Panel B also

presents the average alphas across portfolios and time, E[αp,t], where αp,t is an element of the

portfolio alpha vector αp = ω′
tZtΓα and ωt denotes the unit-investment portfolio weights.

With Γα statistically zero, the average alphas should also be zero; however, Panel B shows

values ranging from 4.33% to 11.13% on an annualized basis. This evidence suggests that

the zero-alpha conclusion should be interpreted with caution.

Appendix D. Additional Empirical Results

D.1. Factor Model Statistical Performance

In addition to total R2, predictive R2 measures the model explanatory power of test

assets using the factor risk premia, calculated as the prevailing sample average of factors up

to the last month:
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Table D.1: In-Sample Model R2

Models Test Assets Metrics
# Factors

1 3 6 9

FF

Individual Stocks
Total R2 10.9 17.0 18.7 19.5

Pred R2 0.93 0.90 0.89 0.87

Portfolios
Total R2 89.4 94.1 95.2 95.4

Pred R2 3.42 3.42 3.42 3.42

PCA

Individual Stocks
Total R2 4.5 10.3 13.1 14.3

Pred R2 0.01 0.28 0.34 0.34

Portfolios
Total R2 94.1 97.4 98.1 98.3

Pred R2 3.42 3.42 3.42 3.42

IPCA

Individual Stocks
Total R2 12.8 15.1 15.8 16.0

Pred R2 0.81 0.79 0.78 0.77

Portfolios
Total R2 78.7 94.0 95.0 95.5

Pred R2 3.01 3.10 3.18 3.17

AE

Individual Stocks
Total R2 12.4 13.3 13.5 13.5

Pred R2 1.12 1.02 1.09 1.16

Portfolios
Total R2 84.1 92.9 92.9 93.3

Pred R2 3.52 3.50 3.51 3.37

Notes: This table reports the in-sample total R2 and predictive R2 in percentages (%) for FF,
PCA, ICA, and AE models with 1, 3, 6, and 9 factors.

R2
pred = 1−

∑
i,t

(
ri,t − β̂

′
iλ̂t−1

)2∑
i,t r

2
i,t

. (D.1)

For comparison, total R2 measures how well the realized factor returns explain realized

asset returns, whereas predictive R2 evaluates how well a model’s conditional expected re-

turns explain realized asset returns. Table D.1 and D.2 present both performance metrics

for individual stocks and characteristic-sorted portfolios across the FF, PCA, IPCA, and AE

models, constructed in-sample and out-of-sample, respectively. Consistent with Gu et al.

(2021), I find that IPCA and AE models outperform the standard FF and PCA benchmarks

in terms of both total and predictive R2, for both individual stocks and characteristic-sorted

portfolios. As expected, predictive R2 values for individual stocks are negative under the FF

and PCA models. Comparing IPCA and AE, I find that IPCA achieves slightly higher total
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Table D.2: Out-of-Sample Model R2

Models Test Assets Metrics
# Factors

1 3 6 9

FF

Individual Stocks
Total R2 6.5 7.4 2.7 0.3

Pred R2 -0.23 -0.21 -0.24 -0.25

Portfolios
Total R2 86.6 92.1 93.6 93.9

Pred R2 2.89 2.88 2.89 2.89

PCA

Individual Stocks
Total R2 7.4 6.9 7.1 7.2

Pred R2 -1.09 -1.06 -1.07 -1.07

Portfolios
Total R2 92.3 96.2 97.1 97.5

Pred R2 2.88 2.88 2.88 2.88

IPCA

Individual Stocks
Total R2 11.0 13.3 13.9 14.1

Pred R2 0.54 0.55 0.54 0.52

Portfolios
Total R2 73.6 93.0 93.8 94.4

Pred R2 3.15 3.22 3.23 3.27

AE

Individual Stocks
Total R2 10.2 11.3 11.3 11.3

Pred R2 0.66 0.78 0.71 0.81

Portfolios
Total R2 79.5 91.7 93.3 92.5

Pred R2 3.23 3.02 3.27 3.13

Notes: This table reports the out-of-sample total R2 and predictive R2 in percentages (%) for FF,
PCA, ICA, and AE models with 1, 3, 6, and 9 factors.

R2, whereas AE delivers higher predictive R2, particularly for individual stocks.

Table D.2 replicates Tables 1 and 2 of Gu et al. (2021), but the magnitudes of predic-

tive R2 for characteristic-sorted portfolios are considerably larger in my results. For IPCA

and AE, this difference likely stems from portfolio construction. I form 273 extreme-tercile

characteristic-sorted portfolios, whereas Gu et al. (2021) uses managed portfolios constructed

from the characteristics matrix, xt = (Z ′
t−1Zt−1)Zt−1rt. For FF and PCA, the discrepancy

primarily reflects my inclusion of an intercept in model estimation. Since both FF and PCA

are estimated via OLS, including an intercept implies that predicted returns reduce to his-

torical averages. Consequently, the predictive R2 for FF and PCA essentially capture the

predictive R2 associated with expanding mean returns.
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D.2. In-Sample Zero-Beta Rate Estimates

In Section 3.5, I examine two sets of characteristic-sorted portfolios that differ in their

GMV portfolio returns to test this hypothesis of spurious robustness. Specifically, I rank the

characteristic-sorted portfolios by their return variances and select the 130 portfolios with the

highest variances as an alternative universe of test assets. The first asset group thus contains

the full set of 273 characteristic-sorted portfolios, while the second group includes only the

136 high-variance portfolios. The analytical portfolio weights for the GMV portfolio are

given byΣ−1ι/ι′Σ−1ι. The resulting in-sample mean returns of the GMV portfolio are 11.8%

and 12.3% for the two asset groups, respectively. This partition enables an examination of

whether zero-beta rate estimates differ systematically across asset universes characterized

by distinct GMV portfolio returns.

Figure. D.1. In-Sample Zero-Beta Rate across Different Asset Universes
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Notes: This figure shows the in-sample estimated zero-beta rates obtained from unit-investment,

minimum-variance zero-beta portfolios across two asset universes that differ in their GMV

portfolio returns. In the first asset group (black dashed line), which includes the full set of 273

characteristic-sorted portfolios, the mean GMV portfolio return is lower (11.8%). In the second

asset group (blue dashed line), consisting of the 136 high-variance portfolios, the mean GMV

portfolio return is higher (12.3%). Four classes of factor models—FF, PCA, IPCA, and AE—with

1, 3, 6, and 9 factors are analyzed. The estimated zero-beta rates are represented by circles,

squares, diamonds, and triangles, respectively.
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Figure D.1 shows the in-sample estimated zero-beta rates obtained from unit-investment,

minimum-variance zero-beta portfolios across two asset universes that differ in their GMV

portfolio returns. In the first asset group (black dashed line), which includes the full set

of 273 characteristic-sorted portfolios, the mean GMV portfolio return is lower (11.8%). In

the second asset group (blue dashed line), consisting of the 130 high-variance portfolios, the

mean GMV portfolio return is higher (12.3%). Across both asset universes, the estimated

zero-beta rates appear robust to the choice of factor model and to the number of factors.

The literature tends to interpret this spurious robustness as evidence that these estimates

capture the true, unobserved risk-free rate. If that were the case, the zero-beta rates should

be similar across different asset universes. However, the results show that the zero-beta rates

are systematically higher in the universe with the higher GMV portfolio return, although

the difference between zero-beta rates is small due to the small difference between GMV

mean returns (11.8% vs 12.3%). Moreover, the average estimated rates lie close to the mean

GMV portfolio returns within their respective asset groups. This pattern suggests that the

estimated zero-beta rates may primarily reflect the mean return of the GMV portfolio rather

than the true risk-free rate, providing empirical support for my analytical conjecture that

substantial model misspecification biases zero-beta rate estimates upward.

D.3. Simulating Mean-Variance Parameters

Recall from Section 3.6.2, I calibrate the mean-variance frontier such that the true risk-

free rate (rf ) is 3% annually, the return of the true Tangency portfolio (rp∗) is 20% annually,

the mean and standard deviation of the global minimum-variance portfolio is rGMV = 11%

and σGMV = 6.5% (annualized), respectively. Then, inefficient portfolios, corresponding to

misspecified factor models, are generated in the following procedure illustrated in Figure

D.2. The black curves represent the mean-variance frontier. For a randomly generated

inefficient portfolio p1, Panel (a) plots the zero-beta frontier and the minimum-variance

zero-beta portfolio, zp1 . Applying equations (6) and (15), I compute the analytical zero-beta

rate and the maximum Sharpe ratios of zero-investment, zero-beta portfolios associated with

portfolio p1. In Panel (b), I plot p1 in the rate-misspecification space. Similarly in Panel (c)

and (d), another inefficient portfolio p2 is generated and represented by a pair of values of

zero-beta rate and the misspecification measure. Repeating this portfolio generating process

for 100,000 times, Panel (e) shows the uniform distribution of inefficient portfolios created

in the mean-variance space. I restrict that the mean of the inefficient portfolio is higher

than rGMV and not 20% higher than the mean return of the tangency portfolio. Standard

deviations of the inefficient portfolios are lower than 40%. Results and conclusions from this

simulation exercise is not affected by these boundary choices. All inefficient portfolios are
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plotted in Panel (f) in the rate-misspecification space. Based on this scatter plot, Figure 8

compute the Cumulative Distribution Function (CDF) of the estimated zero-beta rates from

100,000 inefficient portfolios p and the probability that the estimated zero-beta rate (rz)

exceeds a given threshold (x), as a function of the maximum Sharpe ratio of the economy.

Figure. D.2. Simulated Zero-Beta Rate Estimates
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(d) Rate-Misspecification Space
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(f) Rate-Misspecification Space

Notes: This figure illustrates the procedure of generating inefficient portfolios (misspecified

model) and plot pairs of zero-beta rate estimates and maximum Sharpe ratios of zero-investment,

zero-beta portfolios.

D.4. Individual-Stock Level Proportional Transaction Costs

Figure. D.3. Individual-Stock Level Proportional Transaction Costs
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Notes: This figure shows the time variation of the mean, median, 5th percentile, and 95th

percentile of individual transaction costs from Jan 1960 to Dec 2024, measured using the average

low-frequency effective spreads described in Chen and Velikov (2023).
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D.5. “Arbitrage” Portfolios

The literature has proposed alternative approaches to constructing beta-neutral portfo-

lios that hedge risks associated with stock characteristics while exploiting the mispricing

component of individual stock returns. These are referred to as “arbitrage” portfolios.23 Ta-

ble D.3 reports the performance of the “arbitrage” portfolios of Kelly, Pruitt, and Su (2019)

(KPS) and Kim, Korajczyk, and Neuhierl (2021) (KKN) with 1, 3, 6, and 9 factors. Both

approaches aim to extract the mispricing component (alphas) of individual stocks, orthogo-

nal to the risks associated with stock characteristics (betas). Portfolio weights are then set

proportional to the estimated mispricing signals, implying that the strategy goes long stocks

with high predicted alphas and short stocks with low or negative predicted alphas.

Table D.3 highlights that while these “arbitrage” portfolios may perform impressively

out-of-sample before transaction costs, their performance deteriorates sharply once costs are

accounted for. The KPS arbitrage portfolios are particularly striking: gross Sharpe ratios

approach 3.0. Yet either type of trading costs wipes out these gains—Sharpe ratios turn

highly negative accounting for proportional costs or price impact costs. The KKN portfolios

perform more modestly, with Sharpe ratios around 1 before costs, but after-cost Sharpe

ratios again reduce to near zero or negative.

In this paper, I construct zero-beta strategies using betas from 273 characteristic-sorted

portfolios rather than individual stocks. In contrast, both KPS and KKN conduct their

analyses at the individual stock level, which may account for the differences in investment

performance. My findings indicate that zero-beta strategies are more profitable when based

on characteristic-sorted portfolios once trading frictions are considered.

A further observation is that the performance of the KPS and KKN “arbitrage” portfolios

does not materially change with the number of factors. This suggests that their profitability

may not be driven by beta-neutrality, since removing additional systematic risk exposures

does not alter performance. This echoes the concern that individual-stock beta estimates

are relatively noisy, making them a weaker basis for portfolio construction.

23Both the zero-beta strategies and the “arbitrage” portfolios in Kelly et al. (2019) and Kim et al. (2021)
are not arbitrage in the classical, risk-free sense. Rather, they are forms of statistical arbitrage that use
quantitative models to identify potential mispricings and construct portfolios hedged against known sources
of systematic risk. They still bear risk, as true risk-free arbitrage may not exist in practice due to frictions
and limits to arbitrage (Shleifer and Vishny, 1997).
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Table D.3: Sharpe Ratios for “Arbitrage Portfolios” with Trading Costs (Annualized)

Methods
KPS KKN

1-factor 3-factor 6-factor 9-factor 1-factor 3-factor 6-factor 9-factor

(1) 2.62 2.96 2.78 2.14 1.01 1.01 1.01 1.01

(2) -1.97 -1.38 -1.84 -1.77 0.05 0.04 0.05 0.04

(3) -2.93 -2.41 -2.46 -2.35 -0.88 -0.91 -0.94 -0.94

(4) -3.59 -3.03 -2.89 -2.53 -1.07 -1.11 -1.15 -1.16

(5) -3.62 -3.06 -2.91 -2.54 -1.08 -1.12 -1.16 -1.17

(1): Out-of-sample, no transaction costs.

(2): Out-of-sample, proportional costs.

(3): Out-of-sample, price impact costs (wealth by 2024: $ 5 billions).

(4): Out-of-sample, price impact costs (wealth by 2024: $ 50 billions).

(5): Out-of-sample, price impact costs (wealth by 2024: $ 100 billions).

Notes: The table reports the performance of the annualized Sharpe ratios of “arbitrage”

portfolios constructed in Kelly, Pruitt, and Su (2019) and Kim, Korajczyk, and Neuhierl (2021)

with 1, 3, 6, and 9 factors. Transaction costs include proportional trading costs and price impact

costs. Portfolio weights are scaled to target an annualized volatility of 15%.
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