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Abstract

This paper resolves a long-standing zero-beta rate puzzle—the empirical finding
that estimated zero-beta rates remain persistently high across factor models. I show
that this apparent robustness arises from pervasive model misspecification rather than
reflecting a genuinely high risk-free rate. When a factor model fails to perfectly price
assets, the zero-beta rate is no longer uniquely identified, and the standard estima-
tor—based on the minimum-variance zero-beta portfolio—converges toward the mean
return of the global minimum-variance portfolio as model misspecification increases.
To quantify this mechanism, I introduce a new investment-based measure of model
misspecification: the maximum Sharpe ratio attainable by zero-investment, zero-beta
portfolios. This measure captures the economic magnitude of pricing errors and links
model misspecification to empirically observable investment opportunities. Studying a
comprehensive set of classical and modern factor models, I find substantial misspecifi-
cation, explaining why all models yield similarly elevated zero-beta rates. Simulation
analyses confirm that realistic degrees of misspecification can fully reproduce the em-
pirical magnitude of the puzzle even when the true risk-free rate is low.
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1. Introduction

The zero-beta rate, defined as the expected return of a portfolio orthogonal to the stochas-
tic discount factor (SDF), has long occupied a central place in theoretical and empirical asset
pricing. Since the seminal contributions of Black (1972) and Black, Jensen, and Scholes
(1972), the notion of a zero-beta portfolio—one uncorrelated with the factor portfolio—has
provided the foundation for asset pricing models that operate without a risk-free asset. In
such settings, the zero-beta rate serves as a substitute for the unobservable risk-free rate,
representing the expected return on a portfolio that bears no systematic risk.

Within the CAPM framework, empirical estimates of this rate have persistently appeared
high, often far exceeding Treasury bill yields or other risk-free proxies. This pattern cor-
responds to a flat security market line with a large intercept and motivates the extensive
literature on the beta anomaly, wherein low-beta stocks tend to earn higher risk-adjusted
returns than high-beta stocks. A common interpretation attributes this discrepancy to the
inadequacy of a single-factor model: the market factor alone cannot capture the cross-section
of expected returns, and additional factors are required. Yet, Di Tella, Hébert, Kurlat, and
Wang (2025) demonstrate that even when a rich set of cross-sectional risk factors is included,
the estimated zero-beta rate remains well above the level of Treasury yields. I confirm this
finding: across a wide range of models—from traditional Fama-French models with pre-
specified factors to more recent machine-learning models with latent factors—the estimated
zero-beta rate remains strikingly high. I refer to this persistent pattern as the zero-beta
rate puzzle, which continues to challenge our understanding of factor models and risk pricing
mechanisms in financial markets.

The connection between zero-beta rate, equity risk premium, and convenience yield deep-
ens the significance of the zero-beta rate puzzle. Safe asset yields, such as Treasury yields,
are typically lower than the frictionless risk-free rate due to a “convenience yield” that re-
flects their non-pecuniary benefits in providing liquidity, collateral, hedging, and regulatory
services (Bansal and Coleman, 1996; Krishnamurthy and Vissing-Jorgensen, 2012; Nagel,
2016; Acharya and Laarits, 2025, Cieslak, Li, and Pflueger, 2025; etc.). If the unobserved
risk-free rate implied by zero-beta estimation is indeed high, then the market risk premium
must be low and the convenience yield high. Conversely, a low risk-free rate implies a high
market risk premium and a small convenience yield. The empirical robustness of zero-beta
rate estimates across models appears to suggest a high risk-free rate (Di Tella et al., 2025).

This paper challenges the interpretation of the robustness of zero-beta rate estimates.
Rather than viewing the stability of zero-beta rate estimates across diverse models as evi-

dence of economic validity, [ argue that such robustness reflects a common statistical problem:



model misspecification. To demonstrate the relationship between model misspecification and
zero-beta rate estimation, I proceed in four steps.

First, I discuss the conceptual relationship among factor model misspecification, the
zero-beta rate, and the risk-free rate. To clarify terminology at the outset: the risk-free
rate is the expected return on an asset that delivers a certain payoff in every future state
of the world. It is a universal concept, not tied to any specific asset pricing model. The
zero-beta rate, by contrast, is defined within a particular factor model or, equivalently, with
respect to a given stochastic discount factor (SDF). It represents the expected return of any
portfolio orthogonal to the factor space. Under a correctly specified factor model—one that
perfectly prices all risky assets—all zero-beta portfolios share the same expected return, and
the zero-beta rate implied by that model is unique. However, it does not necessarily equal
the true risk-free rate. The reason lies in market incompleteness. When no risk-free asset is
traded, there exist infinitely many admissible stochastic discount factors—and thus infinitely
many factor models—that can all price the same set of risky returns. Each model implies
its own internally consistent “risk-free rate”. This idea can also be understood through
mean-variance analysis: any efficient portfolio on the mean—variance frontier (except the
global minimum-variance portfolio) defines an SDF, or equivalently a factor model, that
perfectly prices all risky assets. Each such model implies a unique, model-specific zero-beta
rate, which need not coincide with the true risk-free rate. In short, the risk-free rate is
fundamentally unidentified from risky returns alone (Cochrane, 2009). Hence, attempts to
infer the true risk-free rate from factor models are inherently limited—even if the model
appears to perfectly price all risky assets.

In practice, no empirical factor model perfectly prices the cross section of returns. When
a model fails to capture the full return structure, pricing errors generate multiple zero-beta
portfolios with distinct expected returns, making the zero-beta rate non-unique. This in-
sight builds on Roll (1980), who studies orthogonal portfolios in the context of the CAPM.
Among the infinitely many possible zero-beta portfolios, the empirical literature conven-
tionally selects a particular one—the unit-investment, minimum-variance zero-beta portfo-
lio—and interprets its expected return as the zero-beta rate. This convention originates
from Black (1972) and Black et al. (1972), where, under a perfectly specified factor model,
the minimum-variance zero-beta portfolio lies on the mean—variance frontier. However, when
the model is misspecified, this choice loses theoretical justification and introduces systematic
estimation bias. Specifically, when the factor model corresponds to an inefficient portfolio in
mean—variance space, greater inefficiency—manifested as higher variance for a given mean
or lower mean for a given variance—tends to push the estimated zero-beta rate upward. In

the limit, severe misspecification drives the estimate toward the mean return of the global



minimum-variance (GMV, hereafter) portfolio. Intuitively, when the factors explain little or
nothing about expected returns, the zero-beta constraint effectively becomes irrelevant. The
estimation problem then collapses to minimizing variance alone, in which case the minimum-
variance zero-beta portfolio coincides with the GMV portfolio.

These analytical results reveal that the robustness of zero-beta rate estimates and their
proximity to the mean return of the GMV portfolio likely arise because most factor models
share similarly large degrees of misspecification. I use the term “model misspecification”
broadly, without imposing assumptions on its source—whether omitted factors, weak fac-
tors, genuine mispricing, or pure measurement errors. Any deviation from perfect pricing
constitutes misspecification. In mean—variance terms, this implies that the factor space fails
to span or intersect the efficient frontier. Hence, throughout the analysis, I treat portfolio
inefficiency and factor model misspecification as equivalent concepts.

Second, to quantify model misspecification empirically, I propose a general and economi-
cally grounded measure based on the maximum Sharpe ratio attainable by zero-investment,
zero-beta portfolios. Under a correctly specified factor model, such portfolios should yield
zero expected returns, resulting in a Sharpe ratio of zero. Any positive Sharpe ratio therefore
reflects systematic pricing errors that can be potentially exploited, implying that the greater
the Sharpe ratio of these portfolios, the greater the degree of model misspecification. This
measure offers several advantages over traditional diagnostics. First, it captures the economic
magnitude of mispricing by constructing optimal investment strategies that directly exploit
the pricing errors implied by a model. In contrast, regression-based R? statistics may fail to
reflect economic misspecification because they aggregate unweighted squared pricing errors.
Second, constructing a portfolio and estimating its Sharpe ratio is computationally more
efficient than estimating asset-level pricing errors (alphas) through regressions as required
by the Gibbons, Ross, and Shanken (1989) (GRS) statistic. Finally, computing the Sharpe
ratio of a zero-investment portfolio does not require knowledge of the true risk-free rate,
providing a tractable and robust way of evaluating misspecification even when the zero-beta
rate itself is unidentified.

Empirically, I examine a broad range of factor models—Fama-French (FF), principal
component analysis (PCA), instrumented PCA (IPCA; Kelly, Pruitt, and Su, 2019), and
conditional autoencoder (AE; Gu, Kelly, and Xiu, 2021) models. Across all specifications, the
evidence reveals substantial misspecification: the maximum Sharpe ratios of zero-investment,
zero-beta portfolios are economically large, exceeding 3 in-sample and 1 out-of-sample on an
annualized basis. This implies that no major factor model is close to achieving mean—variance
efficiency required for a unique and unbiased zero-beta rate. Moreover, the similar Sharpe

ratios across models suggest comparable degrees of misspecification—helping explain why



all models tend to yield similar, biased zero-beta rates close to the GMV mean return.

Thrid, to demonstrate how estimated zero-beta rates align with the mean return of the
GMYV portfolio, I examine two distinct universes of test assets that differ in their GMV
mean returns. I find that the estimated zero-beta rates are systematically higher in the asset
universe with a higher GMV mean return. Moreover, these estimates remain remarkably
stable across different model specifications and lie close to the GMV mean returns within
their respective asset groups. This pattern indicates that the estimated zero-beta rates
primarily reflect the mean return of the GMV portfolio rather than the true risk-free rate,
providing empirical support for my analytical result that substantial model misspecification
biases zero-beta rate estimates toward the GMV mean return.

Fourth, I use simulation analysis to quantify the magnitude of this bias and demonstrate
that the observed empirical patterns can arise purely from model misspecification. The
first simulation constructs returns from a fully specified “true” twelve-factor model encom-
passing standard sources of systematic risk—market, size, value, profitability, investment,
momentum, mispricing, volatility, and liquidity factors. In this setting, the true SDF and
risk-free rate are known. I then deliberately introduce misspecification by omitting one or
more factors from the estimated model and re-estimating the zero-beta rate using standard
procedures. The results show a strong, monotonic relationship: as the number of omitted
factors increases, the estimated zero-beta rate rises and converges towards the GMV mean
return in the simulated world. This indicates that empirically observed biases can be fully
explained by factor model misspecification alone, even when the true risk-free rate is low.

The previous simulation exercise only generates model misspecification from missing fac-
tors. To stay agnostic about the sources of misspecification, the second simulation ab-
stracts from specific factor structures and instead directly calibrates parameters of the
mean—variance frontier. Assuming a true annual risk-free rate of 3%, I simulate many in-
efficient portfolios corresponding to misspecified models. For each simulated portfolio, I
compute both the implied zero-beta rate and the maximum Sharpe ratio of zero-investment,
zero-beta portfolios. The results confirm a clear pattern: as inefficiency increases, the esti-
mated zero-beta rate converges toward the mean return of the GMV portfolio. When mis-
specification is severe (Sharpe ratio around 1.1), the probability that the estimated zero-beta
rate exceeds 8% is approximately 80%. Hence, the empirical magnitude of the zero-beta rate
puzzle—several percentage points above Treasury yields—can naturally arise from plausible
degrees of model misspecification.

These simulations confirm that greater model misspecification leads to higher estimated
zero-beta rates, even when the true risk-free rate is low, hence transforming the zero-beta

rate puzzle from an empirical anomaly into a measurable outcome of model misspecification.



Equity Risk Premium Puzzle and Risk-Free Rate. The preceding results suggest
that high estimated zero-beta rates can emerge purely from model misspecification, even
when the true risk-free rate is low. A natural complementary question is whether a genuinely
high risk-free rate would be consistent with equilibrium asset pricing. Intuitively, a higher
risk-free rate does not alleviate the challenge of explaining equity returns. As the risk-free
rate rises, investors would require even higher compensation to hold risky assets in order
to maintain equilibrium consistency, implying a larger risk premium on the true tangency
portfolio. In this sense, a high risk-free rate amplifies the equity risk premium puzzle, rather
than resolving it, thereby creating greater tension with structural models in macro-finance.

Literature and Contributions. This paper contributes directly to the empirical liter-
ature on zero-beta rate estimation. Fama and MacBeth (1973), Gibbons (1982), Giglio and
Xiu (2021), among others, estimate the zero-beta rate as the intercept from cross-sectional
regressions, while Long (1971), Black (1972), and Black et al. (1972) solve for the minimum-
variance market-neutral portfolio weights and compute its mean return. Di Tella et al. (2025)
extend this framework by modeling the zero-beta rate as a time-varying function of macroe-
conomic predictors. Despite methodological differences, all find robustly high estimated
zero-beta rates across models—a phenomenon [ reinterpret as evidence of misspecification
rather than as an equilibrium property of financial markets.

The paper’s key contribution is to reconceptualize the zero-beta rate puzzle as an iden-
tification failure stemming from model misspecification. I provide theoretical, empirical,
and simulation-based evidence linking model misspecification to zero-beta rate estimates.
Specificallym, I argue that the empirical robustness of zero-beta rate estimates arises jointly
from pervasive model misspecification and the reliance on the minimum-variance zero-beta
portfolio estimator. The results caution against the use of factor-model-implied zero-beta
rates to infer the magnitude of the risk premium or the convenience yield, as these estimates
do not provide information about the true risk-free rate. In addition, the paper proposes
an economically grounded measure of model misspecification based on the maximum Sharpe
ratio of zero-investment, zero-beta portfolios, which complements existing statistical metrics
by directly connecting model fit to exploitable investment opportunities.

This paper is closely related to the huge factor model literature (Ross (1976); Huber-
man (1982); Chamberlain and Rothschild (1983); Ingersoll Jr (1984); Connor and Korajczyk
(1986); Fama and French (1993); Carhart (1997); Hou et al. (2015); Stambaugh and Yuan
(2017); Fama and French (2018); Kelly et al. (2019); Gu et al. (2021); etc.). I also ex-
plore the investment opportunities from investing in beta-neutral/“arbitrage” portfolios,
studied in Kim et al. (2021), Lopez-Lira and Roussanov (2020), and others. The fact that

prominent factor models are strongly misspecified implies economically meaningful and im-



plementable investment opportunities to exploit model mispricing. In particular, I find that
zero-investment, zero-beta strategies delivers superior investment performances, even after
accounting for either proportional or price-impact transaction costs. For small- and medium-
sized investors, pursuing such strategies are shown to consistently outperform the market,
producing impressive alphas against standard risk factors (above 0.4% on a monthly basis).
Moreover, the results reveal that simpler, parsimonious models—such as single-factor imple-
mentations—tend to generate the strongest feasible profits, with annualized Sharpe ratios
above 0.75. Although such parsimonious models fall short of capturing the full risk structure
of returns, they can yield highly profitable and practically implementable factor-neutral in-
vestment strategies. Furthermore, these portfolios are well diversified and free from extreme
positions in individual stocks, and their leverage ratios range from 1.84 to 4.10, which are
well within reasonable and implementable levels.

Paper Structure. The remainder of the paper is organized as follows. Section 2 de-
velops the theoretical link between model misspecification and zero-beta rate estimation.
Section 3 presents the data, model specifications, and empirical analysis quantifying the
misspecification channel. Section 4 explores the economic tension between the equity risk
premium puzzle and the risk-free rate. Section 5 evaluates the investment performance of

zero-beta strategies after accounting for transaction costs. Section 6 concludes.

2. Zero-Beta Rate and Factor Model Misspecification

First and foremost, it is essential to draw a clear conceptual distinction between risk-
free rate and zero-beta rate. The risk-free rate is the expected return on an asset with no
uncertainty about its payoffs across all future states of the world. It is a universal notion, not
dependent on any particular asset pricing model. In contrast, the zero-beta rate is defined
within the context of a specific factor model or, equivalently, with respect to a given stochastic
discount factor (SDF). It represents the expected return on any portfolio that is orthogonal
to the SDF or, equivalently, carries zero exposure to the model’s factors. In empirical asset
pricing, researchers often assume that a risk-free rate exists and that it coincides with the
model-implied zero-beta rate. However, in frameworks where a risk-free asset is absent—such
as in Black (1972); Black et al. (1972)—Cochrane (2009) emphasizes that the risk-free rate
is fundamentally not identified from risky returns alone. In an incomplete market, where
no risk-free asset is traded, there exist infinitely many admissible SDFs—and, equivalently,
infinitely many factor models—that can all perfectly price the same set of risky returns. Each
SDF or factor model implies its own zero-beta rate, which can be viewed as an internally

consistent, model-specific “risk-free rate”. This reasoning implies that estimating the true



risk-free rate from risky returns using factor models is fundamentally infeasible. Nevertheless,
the literature continues to employ factor models to estimate zero-beta rates, and a striking
empirical fact has emerged: estimated zero-beta rates remain persistently high across a wide
range of risk factors (Di Tella et al., 2025) and model specifications. I refer to this empirical
phenomenon as the zero-beta rate puzzle, which this paper seeks to resolve.

This section examines the impact of factor model misspecification on the estimation
of the zero-beta rate. Section 2.1 revisits existing estimation approaches and shows that
the zero-beta rate is typically computed as the expected return of the unit-investment,
minimum-variance zero-beta portfolio. Section 2.2 demonstrates that when a factor model
is misspecified, the expected returns of zero-beta portfolios can take infinitely many values,
implying that the zero-beta rate is not uniquely identified. In such cases, the conventional
estimator based on the minimum-variance zero-beta portfolio becomes arbitrary and lacks
clear economic interpretation. Section 2.3 further investigates the observed robustness of
zero-beta rate estimates and shows that large model misspecification systematically pushes
the estimated zero-beta rate toward the mean return of the global minimum-variance (GMV,
hereafter) portfolio. Thus, the empirical robustness of zero-beta rate estimates may arise
jointly from pervasive model misspecification and the reliance on the minimum-variance
zero-beta portfolio estimator. Finally, Section 2.4 introduces a general, investment-based

measure of factor model misspecification that will be used in empirical assessments.

2.1. Zero-Beta Rate Estimation

Suppose there are N assets in the market, Ryy; € RY, indexed by i = 1,2,..., N. Let
p denote the expected return vector and ¥ the variance-covariance matrix. A factor model
posits that an asset return R;;;, follows a K-factor structure and the expected return in

excess of the zero-beta rate is determined by risk loadings and factor risk premia:

Rippr =g+ B;tfm + €it11 (1)
Mit — Tzt = Qig + 5;,,5)% (2)

Equation (1) is the statistical assumption of realized asset returns where «;, is the inter-
cept term, B3, is the K x 1 vector of risk loadings, and f;,; is the K x 1 vector of factors.
In the theoretical expected returns model of equation (2), a;; represents the pricing errors
which should be zero if the factor model is perfect, A; is the K x 1 vector of factor risk
premia, and r,; denotes the zero-beta rate—expected return for not taking any (systematic)
risk. This is a general factor model framework incorporating a wide range of model specifica-

tions. The conventional Fama-French type of models assume constant betas and pre-specify



known risk factors. The Arbitrage Pricing Theory (APT) models retain the constant betas
but rely on principal component analysis (PCA) to extract statistical factors. With the
recent development of machine learning techniques, advanced conditional models are able to
formulate betas as functions of asset characteristics.

This paper examines the zero-beta rate r,; implied by a factor model, which is often
proxied in empirical studies using the U.S. Treasury bill yield, since Treasury bills are re-
garded as risk-free assets. However, because Treasury securities offer a convenience yield,
their yields tend to be lower than the true frictionless risk-free rate. The literature has
proposed several methods to estimate the zero-beta rate implied by a given factor model.
In particular, I revisit two widely used approaches for estimating the zero-beta rate: the

portfolio-based approach and the regression-based approach.!

2.1.1.  Portfolio Approach

The portfolio approach estimates the zero-beta rate in a given factor model by iden-
tifying the unit-investment, minimum-variance portfolio that has zero exposure to factor
risks, and then taking its expected return as the zero-beta rate. This approach originates
from Long (1971), Black (1972), and Morgan (1975), who explicitly solve for the minimum-
variance portfolio orthogonal to the market. Formally, they solve the optimization problem:
min w'Xw subject to w't = 1 and w'Xw,, = 0 where ¢ is a vector of ones and w,, denotes
t}c;e market portfolio weights. The zero-covariance constraint w’Xw,, = 0 ensures that the
portfolio is market-neutral. The analytical solution is w, ;, = (1 — kt'wy,) Weme + KWy,
where Wy, = > (L’ 2_11,) is the global minimum-variance portfolio weights, and x =
(Wl Bwn) [ ((Vwn) W), Bw, — W), Xw,y,). The sample average return on this minimum-
variance, market-neutral portfolio provides an estimate of the zero-beta rate, r, = E[w/R.1].

Extending this framework from the CAPM to multifactor models introduces additional
challenges, as the multifactor-mimicking portfolio weights are often difficult to obtain, par-
ticularly when factors are latent. Di Tella et al. (2025) generalize the portfolio approach
by directly imposing zero-beta constraints for all factors in the portfolio construction stage:
min w'Xw subject to w'et = 1 and w'B = 0x where 3 denotes the N x K matrix of es-
tic;nated betas? and Og denotes a K x 1 vector of zeros. The analytical solution for the

minimum-variance zero-beta portfolio weights is given by:

!Appendix C.1 discusses another category of zero-beta rate estimation—the test-optimization ap-
proach—which determines the value of the zero-beta rate that makes a given factor model as close as
possible to being correctly specified (see Kandel, 1984, 1986; Shanken, 1986; Velu and Zhou, 1999; Beaulieu
et al., 2013, 2023, 2025; Ferson et al., 2025). This approach, however, is not the main focus of the paper.

2Betas are estimated differently across models. In Fama-French-type models, betas are obtained from
time-series regressions, whereas in machine-learning-based models, they are often estimated as linear or
nonlinear functions of firm characteristics.
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Rather than taking the sample mean of the realized zero-beta portfolio returns, Di Tella

et al. (2025) model the zero-beta rate as a linear function of macroeconomic predictors,
Y. They project realized zero-beta portfolio returns onto these predictors to obtain the
conditional expected return: w’, ,, Rip1 = 6'Y¢ + €41, The fitted value 6"Yy thus provides

a time-varying estimate of the zero-beta rate. *

2.1.2. Regression Approach

The regression approach estimates the zero-beta rate as the intercept in the cross-sectional

regression of expected returns on estimated betas:

E[R;] =X+ XNB; + e (4)
where E[R;] is the sample mean return of asset i, 3, is the estimated K X 1 vector of risk
loadings, A is the K x 1 vector of factor risk premia, and )\ is the intercept term, interpreted
as the zero-beta rate. The regression can be estimated using either ordinary least squares
(OLS) or generalized least squares (GLS). This approach is employed in classic studies such as
Black et al. (1972), Fama and MacBeth (1973), and Gibbons (1982) via the Fama-MacBeth
two-pass procedure, and in more recent work such as Giglio and Xiu (2021) through the

three-pass procedure. When GLS is used, the estimated intercept takes the following form::
/

Aoars = [1 0] ( ; = 5})

where w, denotes the minimum-variance zero-beta portfolio weights defined in equation (3),

L/

/
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and E[R] is the vector of sample mean returns. Thus, the GLS intercept is mathematically
identical to the sample mean return on the minimum-variance zero-beta portfolio. Similarly,
when OLS is used, the intercept corresponds to the sample mean return of a particular zero-

beta portfolio. In this sense, the regression approach is equivalent to the portfolio approach.

3A practical challenge arises because the zero-beta rate is needed to construct excess returns used in
estimating betas via time-series regressions. Since it is not known ex ante but depends on the estimated
betas through equation (3), estimation must proceed iteratively or within a GMM framework that jointly
determines the betas and the time-varying zero-beta rate.



2.2.  Uniqueness of Zero-Beta Rate

The previous discussion of estimation approaches has already alluded to the issue that the
zero-beta rate associated with a given factor model may not be uniquely identified. Among
the infinitely many zero-beta portfolios, empirical studies typically select the minimum-
variance one. This convention follows the classic Black-CAPM (Black, 1972; Black et al.,
1972), in which the intercept of the security market line corresponds to the expected return
on the minimum-variance market-neutral portfolio when either no risk-free asset exists or
borrowing at the risk-free rate is constrained. In this section, however, I re-examine this
portfolio choice and show that it is arbitrary and lacks clear economic interpretation.

Roll (1980) discusses the zero-beta portfolios (orthogonal portfolios) under CAPM. It
proves that the zero-beta rate can take all values if the market portfolio is not mean-variance
efficient. This argument is generally correct for any multi-factor model. As an extension
to Roll (1980), I emphasize the following Proposition about the uniqueness of the zero-beta
rate for any factor model (The complete proof is provided in Appendix B.1).

Proposition 1. There exists an infinite number of unit-investment, zero-beta portfolios ob-

tained within a factor model.

(i) If the factor model is correctly specified, all the zero-beta portfolios have the same
expected returns and the zero-beta rate is uniquely identified.
(i) If the factor model is misspecified, the zero-beta portfolios do not have equal expected

returns and the zero-beta rate is indeterminate.

The intuition can be developed from the vector form of equation (2), E;[Ryq] — ruet =
a; + B\ where Ry is the N x 1 vector of returns, ¢y is a N x 1 vector of ones, a;
is the N x 1 vector of pricing errors, and 3, is the N x K matrix of betas. Consider
an unit-investment, zero-beta portfolio with a N x 1 vector of weights w,. By definition,
w.B, = 0k and w’ ety = 1. Therefore, the zero-beta portfolio should have an expected return:
E R 1] = W E[Ri4q] = ruy - Wy + wlay + w8\ = 1.4 + wla,. A correctly specified
factor model with zero pricing errors (a;; = 0) should recover a unique zero-beta rate r, ;. By
contrast, a misspecified model with non-zero pricing errors fails to disentangle the zero-beta
rate from pricing errors. Different combinations of pricing errors lead to different expected
returns of zero-beta portfolios, and thus indeterminate zero-beta rates.

I further examine the above proposition within the standard textbook mean-variance
framework, following Roll (1980). First of all, asset pricing theory suggests that a correctly
specified factor model corresponds to a mean-variance efficient portfolio on the efficient

frontier, denoted by p*, whereas a misspecified factor model corresponds to an inefficient
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Figure. 1. Unit-Investment Zero-Beta Portfolios
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Notes: This figure shows the unit-investment zero-beta portfolios (orthogonal portfolios) for an
efficient portfolio p* and an inefficient portfolio p in the mean-standard deviation space. The
black hyperbola represents the mean-variance frontier. The blue horizontal solid line represents
the zero-beta portfolios with respect to p*, with z,« denoting the corresponding
minimum-variance portfolio. The gray shaded region depicts the zero-beta portfolios with respect
to p, and the black dashed hyperbola shows their zero-beta frontier, where z, is the corresponding
minimum-variance portfolio. For illustration, when p has the same expected return as p*, the
zero-beta frontier with respect to p is tangent to the mean-variance frontier at zp«.

portfolio p. Figure 1 shows the unit-investment zero-beta portfolios (orthogonal portfolios)
for an efficient portfolio p* and an inefficient portfolio p in the mean-standard deviation space.
The blue horizontal solid line represents the zero-beta portfolios with respect to p*, with z,-
denoting the corresponding minimum-variance portfolio. The gray shaded region depicts the
zero-beta portfolios with respect to p, and the black dashed hyperbola shows their zero-beta
frontier?, where z, is the corresponding minimum-variance portfolio. For illustration, when
p has the same mean as p*, the zero-beta frontier with respect to p is tangent to the mean-
variance frontier at z,-. Proposition 1 (i) shows that the zero-beta portfolios with respect to
p* share the same expected return—the zero-beta rate—represented by the blue horizontal
solid line. In this case, estimating the zero-beta rate using any zero-beta portfolio yields the
same result, and the expected return of these portfolios, r.«, recovers the unique zero-beta
rate. By contrast, Proposition 1 (i) shows that the zero-beta portfolios with respect to p are

located inside the shaded area. Hence, the zero-beta rate becomes indeterminate, admitting

4The zero-beta frontier with respect to portfolio p is defined as the set of zero-beta portfolios for portfolio
p that minimize variance for a given level of mean return.
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infinitely many possible values. In this case, the minimum-variance zero-beta portfolio is no
longer on the mean-variance frontier and using it to estimate the zero-beta rate therefore
produces an arbitrary expected return, r,, that does not have a clear economic interpretation.

Any mean—variance efficient portfolio p* (other than the GMV portfolio) defines a factor
model, a stochastic discount factor (SDF), or a beta-pricing relation that perfectly prices
all risky assets. Each such model implies a unique, model-specific zero-beta rate r}, which
does not necessarily coincide with the true risk-free rate. This mean—variance perspective
reinforces the earlier statement that the risk-free rate is fundamentally unidentified from risky
returns alone. Consequently, attempts to infer the true risk-free rate from factor models are
intrinsically limited, even when a model appears to perfectly price all risky assets.

I use the term model misspecification in a broad sense, remaining agnostic about its spe-
cific sources. Any deviation of a factor model from perfectly pricing all risky assets consti-
tutes model misspecification. In the mean—standard-deviation space, model misspecification
implies that the factors do not span or intersect the mean—variance frontier. Accordingly, I
treat portfolio inefficiency and factor model misspecification as equivalent concepts through-
out the analysis.

In summary, a key challenge in zero-beta rate estimation is that existing methods, which
are based on the minimum-variance zero-beta portfolio, require a correctly specified factor
model to ensure identification of a unique zero-beta rate. Under model misspecification,
however, the zero-beta rate ceases to be unique or identifiable, as it becomes contaminated
by pricing errors and therefore loses its economic interpretability.” In the next section, I
further examine how model misspecification gives rise to estimation bias in the inferred

zero-beta rate.

2.3.  Zero-Beta Rate and Model Misspecification

When the factor model is misspecified, the zero-beta rate ceases to be uniquely iden-
tified. As a result, estimates based on the unit-investment, minimum-variance zero-beta
portfolio lose their economic meaning. Importantly, these estimates are not merely random
values—model misspecification itself can systematically shape them, offering a potential ex-
planation for the empirical robustness of zero-beta rate estimates observed across models. To
formalize this idea, I analyze model misspecification through the lens of portfolio inefficiency
in the mean-standard deviation space. Proposition 2 formalizes the relationship between
portfolio inefficiency and the estimated zero-beta rate (The complete proof is provided in
Appendix B.2.)

A clean identification strategy for the zero-beta rate under inevitable model misspecification may require
additional structural restrictions on the pricing errors, which I leave for future research.
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Proposition 2. Suppose a factor model corresponds to a portfolio p with mean and variance
rp, and o,. The true unobserved Tangency portfolio is denoted as T™, which corresponds
to the true unobserved risk-free rate ry. Denote the mean and standard deviation of the
global minimum-variance portfolio (GMYV) as rayv and ogary. Using the unit-investment,

minimum-variance zero-beta portfolio with respect to portfolio p, the zero-beta rate is:

r,—T

2 P GMV

T2 =TeMv —0gmv 9 2 (6)
Op —0Gmv

(i) The zero-beta rate depends on the location of portfolio p:
- 1, <7y if and only if (ry, —r.) /o) > (rpe —75)/0Fs.
-1y <1, <rguv if and only if (rp — TZ)/O-Z% < (rp« = 1y)/0F- and vy, > reuy-
-1y > remy i and only if v, < ramv -

(i1) If the inefficient portfolio p lies above the GMV portfolio return (r, > raary ), then the

zero-beta rate increases with portfolio inefficiency—it rises with higher volatility (hold-

ing mean return constant) and with lower mean return (holding volatility constant):

dr, dr,
LR 0, R (7)
do, dry,

Equation (6) provides the formula for the expected return (r,) of a portfolio that mini-
mizes variance subject to the constraint of having zero beta (zero covariance) with respect
to a specific factor model portfolio p. This relationship implies that the zero-beta rate
equals the return on the global minimum-variance (GMV) portfolio (rgav) plus a “tilt”
term—the precise adjustment required to satisfy the zero-beta constraint. Based on this for-
mula, Proposition 2 (i) shows that the space of inefficient portfolios can be divided into three
regions, as illustrated in Figure 2. If portfolio p lies in region I, the estimated zero-beta rate
is lower than the true (unobserved) risk-free rate (r, < ry). If p lies below the GMV port-
folio in region III, then the zero-beta rate exceeds the GMV portfolio return (r, > rgav).
When p lies in region II, the zero-beta rate is higher than the true risk-free rate but remains
below the GMV portfolio return (ry < r, < rgumy). Therefore, the level of zero-beta rate r,
depends on the location of portfolio p.

Empirically, regions I and II are the relevant cases to consider, since the factor portfolio p
typically has a higher expected return than the GMV portfolio (r, > rgav) due to a positive

risk-return trade-off.® This condition effectively rules out region III. Focusing on regions I

61f a factor portfolio had a lower expected return than the GMV portfolio, it would imply that investors
are being rewarded less for taking on more risk.
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Figure. 2. Zero-Beta Rate Contour Curves and Portfolio Inefficiency
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Notes: This figure illustrates the estimated zero-beta rate contour curves in the mean-standard
deviation diagram. The black hyperbola represents the mean—variance frontier. Portfolios located
on the blue solid contour curve imply a zero-beta rate equal to the true risk-free rate. This curve
extends leftward and intersects the vertical axis at r;. Portfolios lying on the same blue dashed
contour curve imply an identical zero-beta rate, corresponding to the intercept on the vertical
axis if the curve were extended leftward (not shown). The space of inefficient portfolios can be
divided into three regions. If portfolio p lies in region I, then r, < ry; if it lies in region II, then
ry <r, <rgmv; and if it lies in region III, then 7, > rguyv.

and II, the estimated zero-beta rate r, may be either downward biased (region I) or upward
biased (region II) relative to the unobserved risk-free rate r;. The estimate r, equals to r;
only when the factor model lies on the boundary between regions I and II, represented by
the blue contour curve in Figure 2. This contour extends leftward and intersects the vertical
axis at ry. Overall, this analysis reinforces the earlier argument that zero-beta rate estimates
do not yield definitive information about the true risk-free rate.

However, predictable patterns of the estimated zero-beta rate can be inferred from port-
folio inefficiency. Figure 2 plots other zero-beta rate contour curves within region II. Port-
folios lying along the same blue dashed curve imply an identical estimated zero-beta rate,
which corresponds to the intercept on the vertical axis if the curve were extended leftward

7

(not shown).” The estimated zero-beta rate increases as we move across contour curves

away from the mean—variance frontier. This pattern suggests that as the inefficient port-

"Figure C.1 illustrates the estimated zero-beta rate contour curves in the mean-variance diagram, where
the contours are linear.
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folio p deviates further from the true tangency portfolio 7%, the estimated zero-beta rate
rises from r; toward reav. Proposition 2 (44) formalizes this result, showing that portfolio
inefficiency—i.e., factor model misspecification—inflates the estimation of zero-beta rate.
Assuming the inefficient portfolio p lies above the GMV portfolio, the estimated zero-beta
rate increases monotonically with the degree of inefficiency along both risk and return di-
mensions. Holding the mean return constant, portfolios with higher volatility imply higher
estimated zero-beta rates (dr,/do, > 0). Conversely, holding volatility constant, portfolios
with lower mean returns imply higher estimated zero-beta rates (dr,/dr, < 0). Figure C.2
and C.3 visualize the relationship between portfolio inefficiency and the level of the esti-
mated zero-beta rate in the mean—standard deviation diagram. In an extreme case with
severe model misspecification (ﬁ — 0), the estimated zero-beta rate converges to
the mean return of the GMV portfolio (r, — rgayv) according to equation (6).

In summary, Proposition 2 provides a comprehensive characterization of the relationship
between factor model misspecification and the estimated zero-beta rate. The estimated rate
depends on the location of the factor model portfolio in the mean—variance space. Without
additional information, the zero-beta rate may coincide with, fall below, or exceed the true
risk-free rate. In practice, however, model misspecification tends to inflate the estimated
zero-beta rate, pushing it toward the mean return of the GMV portfolio. An empirical

evaluation of this implication will be presented in Section 3.

2.4. Measure of Model Misspecification

The preceding analysis shows that model misspecification can account for the high es-
timates of zero-beta rates. An important but often overlooked step in the zero-beta-rate
literature is to quantify the degree of model misspecification, as doing so is essential for eval-
uating the potential magnitude of the puzzle. When a factor model closely approximates
an admissible stochastic discount factor (SDF), it produces a unique zero-beta rate—though
not necessarily the true risk-free rate. In contrast, when the model is substantially mis-
specified, its estimated zero-beta rate tends to coincide with the mean return of the global
minimum-variance (GMV) portfolio. Thus, while earlier studies often report that zero-beta
rate estimates appear robust across different factor models, this apparent robustness may
simply reflect the fact that those models are misspecified to a similar degree.

Proposition 3 introduces a measure of factor model misspecification grounded in the
behavior of zero-beta portfolios. The idea builds on Proposition 1, which establishes that
a correctly specified factor model should imply a unique zero-beta rate. Hence, one can
evaluate model misspecification by examining how much the returns on zero-beta portfolios

deviate from featuring a unique rate. (The complete proof is provided in Appendix B.3.)
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Figure. 3. Measuring Model Misspecification
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Notes: This figure shows the measure of factor model misspecification in both a unit-investment
setting (left panel) and a zero-investment setting (right panel). Among unit-investment portfolios
in Panel (a), the red solid line represents the asymptote of the zero-beta frontier (black dashed
hyperbola) with respect to an inefficient portfolio p. Among zero-investment portfolios in Panel
(b), the red solid line is the zero-beta frontier with respect to an inefficient portfolio p.

Proposition 3. The slope of the asymptote for the unit-investment, zero-beta frontier
equals the slope of the zero-investment, zero-beta frontier. These slopes correspond to the
mazimum Sharpe ratio attainable by zero-investment, zero-beta portfolios and thereby provide

a measure of model misspecification.

Figure 3 illustrates this misspecification measure using mean—standard deviation dia-
grams. The left panel depicts the zero-beta frontier in a unit-investment setting, while the
right panel presents its counterpart in a zero-investment setting. In both panels, portfolio p*
denotes the true tangency portfolio, whereas an inefficient portfolio p represents one implied
by a misspecified factor model. In Panel (a), the red solid line shows the asymptote of the
zero-beta frontier (the black dashed hyperbola) corresponding to portfolio p. For a correctly
specified model, the zero-beta set is a horizontal line (blue solid line) with a unique zero-beta
rate. Thus, the slope of the asymptote measures how much zero-beta returns diverge from
featuring a unique rate. In Panel (b), the red solid line represents the zero-beta frontier
corresponding to portfolio p. For a correctly specified model, the zero-beta set coincides
with the horizontal axis (blue solid line), implying zero expected returns. In contrast, for
a misspecified model—represented by the inefficient portfolio p—the shaded area illustrates
all possible zero-investment, zero-beta portfolios. The slope of the zero-beta frontier thus

corresponds to the maximum Sharpe ratio attainable by such portfolios. This slope can be
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expressed as:

S: = SR'(p") — SR*(p) (8)

where S, denotes the slope of the zero-investment, zero-beta frontier. Equation (8) shows
that the maximum Sharpe ratio attainable by zero-investment, zero-beta portfolios equals the
difference in Sharpe ratios between the true tangency portfolio and the model-implied factor
portfolio. This “Sharpe ratio spread”, akin to the GRS statistic®, provides a economically
interpretable measure of model misspecification.

Proposition 3 establishes that the slope of the asymptote in the unit-investment setting
and the slope of the zero-beta frontier in the zero-investment setting are equivalent measures
of factor model misspecification. This is because any unit-investment, zero-beta portfolio
can be orthogonally decomposed into a unit-investment, zero-beta portfolio and the unit-
investment, minimum-variance zero-beta portfolio. For empirical implementation, I focus on
the zero-investment setting, which is more tractable and easier to compute. An additional
advantage of this framework is that the risk-free rate cancels out in zero-investment portfolios,
allowing model misspecification to be evaluated without knowing the true risk-free rate or
estimating a zero-beta rate. Specifically, I construct the optimal zero-investment, zero-
beta portfolio with no exposure to any systematic risk factors of the model and evaluate its
investment performance. This is achieved by solving the following constrained mean—variance

optimization problem:

max w'p — J'Sw
w 2 (9)
st. Wie=0, WB=0g
where ~ is the risk aversion coefficient. The analytical solution for the optimal zero-investment,

zero-beta portfolio weights is:

1 _
wi= - [I-m (s s (10)
v
where IT = [¢, B]. Recall that the unconstrained optimal portfolio weights are given by
w* = %E‘l p. Comparing the two, equation (10) can be interpreted as the optimal portfolio

based on the projected mean return Pru, where Py = [I —1II (H'Z_lH)_1 H’E‘l} is a
generalized projection matrix with weights 37! This matrix projects the mean return

vector onto the subspace orthogonal to II, so that & = Ppu can be interpreted as pricing

2 2
8The GRS statistics: J o %;(SF}?(F) where R and F denotes the test asset returns and factor

returns. It represents the gain in Sharpe ratio from adding test assets to the factor set.
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errors (alphas) and w? represents the optimal portfolio of alphas that is beta neutral.

The maximum Sharpe ratio attainable by zero-investment, zero-beta portfolios is:

S.=Va'rsla (11)

Equation (11) indicates that S, captures the “arbitrage”” investment opportunities that can
be exploited under a given factor model without taking on factor risk. Intuitively, the higher
the attainable Sharpe ratio from this zero-beta (factor-neutral) portfolio, the farther the
model is from correctly pricing all assets—implying greater model misspecification.

This misspecification measure differs from traditional ones in several important ways.
Although S, is conceptually related to the GRS statistic via equations (8) and (11), the
empirical implementation is distinct. Rather than estimating alphas from time-series re-
gressions to compute a test statistic, I directly construct zero-investment, zero-beta port-
folios and evaluate the investment opportunities arising from model-implied pricing errors
(alphas). In addition, model misspecification can be assessed using the Hansen and Jagan-
nathan (1997) distance (HJD)', which measures the distance between a proposed SDF and
the set of all admissible SDF's that correctly price test assets. While HJD is grounded in
the SDF framework, S, provides a complementary investment-based perspective, summa-
rizing in a single alpha portfolio what the factor model fails to capture. Finally, model
R? values—often used informally to assess statistical model fit—may not accurately reflect
economic misspecification. For example, existing factor returns can explain virtually all of
the common time-series variations in stock returns (high time-series R? values), but they
may fail to explain expected returns in the cross-section (Lopez-Lira and Roussanov, 2020).
Cross-sectional R? values vary across models and they rely on unweighted squared pricing
errors. In contrast, S, weights pricing errors by the inverse covariance matrix, emphasizing
economically meaningful directions of mispricing. Consequently, a factor model may exhibit
small average pricing errors and high cross-sectional R?, yet still generate large Sharpe ratios

from zero-beta portfolios, signaling substantial economic deviations from perfect pricing.

9Similar to Kim et al. (2021), the notion of “arbitrage” is that portfolios are constructed to hedge out
the systematic risk.
WHJID = mAi4nIE[MR — 1W™IE[MR — 1] where M is the SDF, R is a matrix of asset returns, and W

is the weighting matrix.
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3. Empirical Assessment

3.1. Data

I obtain monthly individual stock returns and characteristics from the Global Factor Data
website organized by Jensen, Kelly, and Pedersen (2023) (JKP).!! My sample spans January
1960 to December 2024, covering 780 months (65 years). In total, there are 3,658,843 stock-
month observations for 28,828 unique stocks, averaging 4,691 stocks per month. For each
characteristic, I fill missing values with the cross-sectional median by 2-digit SIC industry
each month. After this step, I retain 136 characteristics with complete coverage across the
full sample (see Appendix A.1 for the full list). All characteristics are lagged one month.
JKP update characteristics using the most recent accounting data four months after the
fiscal period ends, ensuring that lagged characteristics are in the public information set and
avoiding look-ahead bias.

I use characteristic-sorted portfolios in model evaluation and zero-beta rate estimation.
Following Jensen et al. (2023), I construct portfolios and factors for each characteristic and
retain the two corner portfolios (top and bottom terciles), since much of the relevant infor-
mation resides in the extremes (Lettau and Pelger, 2020). I also include the middle tercile
portfolio sorted by size so that the market return is spanned by the testing portfolios. This
yields a total of 136 x 2 4+ 1 = 273 univariate-sorted portfolios. Each factor is constructed
as the return spread between portfolios in the top and bottom terciles of a given character-
istic. The factor’s sign is adjusted, if necessary, to ensure that its average return over the
sample period is positive. The timing of my portfolio formation differs a bit from standard
practice: while Fama—French form portfolios annually in June and JKP form them monthly,
I construct portfolios each December, aligned with the rolling out-of-sample periods in my
following analysis. During this procedure, I store portfolio weights on individual stocks. My
empirical results are robust to the portfolio formation method.

In conditional factor models (described in Section 3.2), lagged characteristics also serve as
determinants of model parameters. Following Gu et al. (2020), Gu et al. (2021), and others,
I cross-sectionally rank-normalize all characteristics into the (—1,1) interval each month.
Since stock characteristics often display high skewness and kurtosis, the rank transformation

reduces sensitivity to outliers.

HT thank the authors for making the data easily accessible (a WRDS account with access to CRSP and
Compustat is required).
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3.2.  Candidate Factor Models

I study a wide range of factor models in this paper. For each model, I evaluate specifica-

tions with 1, 3, 6, and 9 factors. A general representation of a factor model is:

Tig+l = a(zi,t) + B(Zi,t),ft—f—l + €t (12)

where f; 11 is a K-dimensional vector of factors, a(z;;) and B(z;,) denote the intercept and
risk loadings, potentially functions of the 136 stock characteristics.

First, I consider unconditional linear models with pre-specified factors, the most widely
used class of models. These models assume that a small set of observable, economically
motivated factors explain stock returns, with constant intercepts and loadings: a(z;;) = o
and B(z;:) = (3. Prominent examples include Fama and French (1993), Carhart (1997), Hou
et al. (2015), Stambaugh and Yuan (2017), and Fama and French (2018). In the 1-factor
case, I include only the market factor. In the 3-factor case, I include market, size, and
value factors. In the 6-factor case, I include market, size, value, profitability, investment,
and momentum factors. In the 9-factor case, I add the betting-against-beta (BAB) factor
(Frazzini and Pedersen, 2014) and two mispricing factors (Stambaugh and Yuan, 2017) to
the 6-factor specification.'? I refer to these models collectively as “FF”.

Second, I use unconditional linear models with PCA factors, rooted in the Arbitrage
Pricing Theory (APT) (Ross, 1976; Huberman, 1982; Chamberlain and Rothschild, 1983;
Ingersoll Jr, 1984; Connor and Korajezyk, 1986, among others). Unlike the CAPM or the
Intertemporal CAPM (ICAPM), which derive from equilibrium models with explicit pref-
erences and market assumptions, APT is a reduced-form framework.'® It assumes a factor
structure in which returns decompose into systematic and idiosyncratic components. With
sufficiently many assets, idiosyncratic risk diversifies away, and the absence of arbitrage op-
portunities yields an approximate linear beta-pricing relation. As in the “FF” case, loadings
are static: a(z;;) = o; and 3(z;;) = 8. The APT naturally motivates the use of principal
component analysis (PCA) to extract statistical factors. Cooper et al. (2021) demonstrate
that such statistically constructed factors outperform most of the traditional “FF”-style
multi-factor models, in both economic and statistical terms. Following this insight, I extract
1, 3, 6, and 9 factors using the standard PCA. I refer to these specifications collectively as
“PCA”.

12The market factor is the weighted average of all stocks. The size, value, profitability, investment, mo-
mentum, BAB, mispricing factors are constructed using characteristics “market_equity”, “be_me”, “ope_me”,
“at_grl”, “ret_12_1”, “betabab_1260d”, “mispricing_mgmt”, and “mispricing_perf”.

13Extensions that embed APT in an equilibrium setting include Connor (1984) and Connor and Korajczyk

(1988).
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Third, I examine conditional linear models with latent factors, which allow risk loadings
to vary with stock characteristics. Specifically, I implement the instrumented principal com-
ponent analysis (IPCA) models of Kelly et al. (2019) with 1, 3, 6, and 9 factors. In this
framework, the intercepts and loadings are modeled as linear functions of observable charac-
teristics: a(z;;) = Iz, and B(z;;) = [z ;. Unlike FF models, which rely on pre-specified
factors, or PCA models, which assume static loadings, IPCA jointly estimates latent fac-
tors and their time-varying exposures using an alternating least squares (ALS) algorithm. I
collectively refer to these models as “IPCA” .1

Finally, T also study conditional non-linear models with latent factors, which leverage
machine learning methods to capture richer relationships between characteristics and risk
exposures. While IPCA models imposes linearity, neural networks can approximate complex
non-linear mappings. I use the conditional autoencoder model of Gu et al. (2021). Autoen-
coders are neural networks designed for unsupervised dimension reduction, which can be
viewed as nonlinear analogues of PCA. They aim to learn a compressed, low-dimensional
representation of input data by training the network to reconstruct their own inputs as accu-
rately as possible. A standard latent factor model can be interpreted as a simple autoencoder,
while conditional autoencoders extend this by incorporating observable characteristics. The
architecture consists of two networks: a multi-layer beta network capturing non-linear map-
pings from characteristics to loadings, and a single-layer factor network generating latent
factors as linear combinations of portfolios. The two are then combined as in equation (12).
My implementation follows Gu et al. (2021) but adds an intercept term in the beta network,
allowing «;; to vary flexibly with characteristics, and uses the 273 characteristic-sorted
portfolios as the input layer to the factor network. Estimation relies on stochastic gradient
descent (SGD), with learning rate tuning, LASSO (l;) penalization, and early stopping for
regularization.'® I refer to these models collectively as “AE” .6

I evaluate factor models both in-sample and out-of-sample. For in-sample analysis, I

run a one-time full-sample model estimation. For out-of-sample analysis, I estimate models

14 Another strand of conditional linear factor models emphasizes time-varying risk premia in addition to
time-varying loadings, pioneered by Ferson and Harvey (1991), who attribute much of cross-sectional return
predictability to variations in risk premia than by variations in betas. Gagliardini et al. (2016) further develop
econometric methods for large panels of individual stocks, modeling both risk premia and risk loadings as
parametric functions of macro instruments and stock characteristics.

150ther machine learning approaches include Feng et al. (2024), who use feed-forward networks to map
characteristics into deep characteristics that generate latent deep factors, and Chen et al. (2024), who incor-
porate no-arbitrage directly into the loss function via a generative adversarial network (GAN) framework.
Their architecture pairs an SDF network that constructs the pricing kernel with a conditional network
that selects assets and moments yielding the largest mispricings, iterating until arbitrage opportunities are
eliminated.

16T use two hidden layers in the beta network, with 32 and 16 neurons, respectively. The empirical results
are robust to the choice of network depth.
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Table 1: Model Total R? (%)

In-Sample Out-of-Sample
Models
1-factor  3-factor  6-factor  9-factor  1-factor  3-factor 6-factor  9-factor
FF 87.0 93.3 95.0 95.9 86.6 92.1 93.9 94.5
PCA 92.7 97.3 98.4 98.9 92.3 96.2 97.4 98.1
IPCA 75.4 93.1 94.4 95.3 73.6 93.0 94.4 95.2
AE 83.1 90.8 94.2 95.0 80.5 88.8 92.8 92.1

Notes: This table reports the total R? values for characteristic-sorted portfolios across four classes
of factor models containing 1, 3, 6, and 9 factors.

using expanding windows and apply estimated model parameters in the out-of-sample period.
For the conditional autoencoder models, in particular, I split the full sample into training,
validation, and testing sets. The initial training period is 1960-1977 (18 years), the validation
period is 1978-1989 (12 years), and the testing period is 1990-1991 (1 year). Following the
literature (e.g., Gu et al., 2020), I refit the models annually. At each refit, the training
sample expands by one year, while the validation sample is rolled forward with a fixed
length, always including the most recent 12 years. This setup yields an out-of-sample period
from 1990 to 2024, totaling 35 years. Since non—deep learning models typically do not require
hyperparameter tuning, I combine the training and validation samples for estimation and use
the same 1-year testing window for out-of-sample evaluation. To ensure comparability, both
the in-sample and out-of-sample periods are set to span January 1990 through December
2024, totaling 420 months. When the sample period is extended to January 1965-December
2024 for the FF, PCA, and IPCA models, the results and conclusions remain unchanged.

I start with the statistical performance of various factor models. Kelly et al. (2019) and
Gu et al. (2021) introduce total R? to measure the model explanatory power of test assets

using contemporaneous factor realizations:

Al A\ 2
Zi’t (Ti,t - ﬂzft)
Zi,t 7’1‘2,1: .

Table 1 reports the total R? values for characteristic-sorted portfolios across four classes

Rt20tal =1- (13>

of factor models containing 1, 3, 6, and 9 factors. All specifications display high time-
series R? values above 75%. These results indicate that existing factor returns account for
nearly all of the common time-series variation in stock returns (Lopez-Lira and Roussanov,

2020). However, they may still perform poorly in explaining the cross-section of expected
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Figure. 4. Ten Beta-Sort Portfolios: Time-Series Regression Results
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Notes: This figure shows the time-series regressions results of pricing ten beta-sorted portfolios
using two factor models: (1) the standard CAPM and (2) an extended two-factor model
incorporating both the market factor (MKT) and the betting-against-beta factor (BAB). Panel A
and B shows the time-series alphas and R-squares for the 10 portfolios, respectively.

returns, leaving substantial pricing errors unaccounted for. Table D.1 and D.2 also reports

the statistical performance of these factor models on individual stocks.

3.3. A Simple Ezercise: Ten Beta-Sorted Portfolios

Before analyzing the four classes of factor models on the 273 characteristic-sorted port-
folios, I begin with a simple illustrative exercise using only ten test assets. The purpose of
this exercise is to demonstrate a key conceptual point: even if one identifies a model that
near-perfectly prices all risky assets, that model may correspond to an arbitrary stochastic
discount factor (SDF) implying an arbitrary zero-beta rate—one that provides no informa-
tion about the true risk-free rate.

I evaluate ten portfolios sorted by market beta as test assets and compare two factor
models: (1) the standard CAPM and (2) an extended two-factor model incorporating both
the market factor (MKT) and the betting-against-beta factor (BAB). Figure 4 reports the
time-series regression results for pricing the ten beta-sorted portfolios under these two mod-
els. Panel A illustrates the well-known beta anomaly under the CAPM: low-beta portfolios
exhibit positive alphas, while high-beta portfolios display negative alphas. Adding the BAB
factor eliminates this pattern and improves the model’s time-series fit, as reflected in higher
R%s (Panel B). In the cross-section regressions estimated via generalized least squares (GLS),

the CAPM produces a statistically significant annualized intercept Ag of 6.50%, whereas the
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Table 2: Ten Beta-Sort Portfolios: Cross-Sectional Regression Results

Models Ao (ann., %) Avkr (ann., %) Apap (ann., %) R? (%)

CAPM 6.50 6.04 77.9
(6.41) (5.31)

CAPM-+BAB 1.90 10.67 -4.40 86.3
(0.50) (3.85) (~4.65)

Notes: This table reports the cross-sectional regressions results of pricing ten beta-sorted
portfolios using two factor models: (1) the standard CAPM and (2) an extended two-factor model
incorporating both the market factor (MKT) and the betting-against-beta factor (BAB). The
regression for the two-factor model is: E[R;] = Ao + B yicr AMKT + B{ papABAB + €. Estimation

uses generalized least squares (GLS). t-statistics are reported in parentheses.

intercept becomes statistically insignificant under the two-factor model. The cross-sectional
R? also increases from 77.9% to 86.3%. These results indicate that the two-factor specifica-
tion statistically passes the cross-sectional test: the MKT and BAB factors jointly capture
the cross-section of ten beta-sorted portfolios, leaving an insignificant intercept.

Since the cross-sectional regressions are estimated using GLS, the intercept term g is
equivalent to the estimated zero-beta rate implied by the unit-investment, minimum-variance
zero-beta portfolio (see Section 2.1). Accordingly, the zero-beta rate estimated from the ten
beta-sorted portfolios under the two-factor model is 1.90% per year, though it is statistically
insignificant. During the same sample period, the average one-month Treasury yield is
3.26%. This finding illustrates that the zero-beta rate can take on an arbitrary value even
when the factor model achieves an almost perfect fit in pricing risky assets. In mean—variance
terms, a near-perfect pricing model merely implies that the factor-model portfolio lies close
to the mean—variance frontier, not necessarily close to the (unobserved) tangency portfolio

associated with the true risk-free rate.

3.4. Measuring Model Misspecification

Section 2.4 introduces an empirical measure of factor model misspecification. Specifically,
I construct the optimal zero-investment, zero-beta portfolios implied by each factor model
using the analytical solution in Equation (10). Portfolios are formed both in-sample and out-
of-sample to avoid full-sample overfitting and look-ahead bias. The Sharpe ratios of these
strategies serve as quantitative measures of model misspecification: the higher the attainable
Sharpe ratio from a factor-neutral portfolio, the greater the potential profits from exploiting

model-implied pricing errors, and thus, the greater the degree of misspecification.
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Table 3: Maximum Sharpe Ratios of Zero-Investment Zero-Beta Portfolios (Annualized)

In-Sample Out-of-Sample
Models
1-factor  3-factor  6-factor  9-factor  1-factor  3-factor 6-factor  9-factor
FF 3.31 3.30 3.26 3.15 1.27 1.27 1.20 1.08
PCA 3.31 3.30 3.18 3.15 1.26 1.28 1.16 1.01
IPCA 3.30 3.29 3.26 3.21 1.28 1.27 1.12 0.99
AE 3.31 3.30 3.29 3.17 1.27 1.16 1.09 0.98

Notes: This table reports the in-sample and out-of-sample annualized maximum Sharpe ratios of
zero-investment, zero-beta portfolios implied by the FF, PCA, IPCA, and AE models with 1, 3, 6,

and 9 factors.

Table 3 reports the annualized maximum Sharpe ratios of zero-investment, zero-beta
portfolios implied by the FF, PCA, IPCA, and AE models with 1, 3, 6, and 9 factors. The
first four columns show that in-sample Sharpe ratios are highly positive, ranging from 3.15
to 3.31 on an annualized basis. Since a correctly specified factor model should imply a zero
Sharpe ratio for such portfolios, these high values indicate that all models considered in this
paper are substantially misspecified in-sample. The last four columns of Table 3 examine the
degree of misspecification out-of-sample. Out-of-sample Sharpe ratios are markedly lower
than their in-sample counterparts—a typical manifestation of full-sample overfitting and
estimation error—yet they remain economically large, ranging from 0.98 to 1.28. Overall, the
evidence strongly suggests that prominent factor models, including those based on advanced
machine learning methods (IPCA and AE), exhibit significant misspecification, as it remains
highly profitable to invest in zero-beta portfolios with no exposure to systematic factor
risks defined in given models. A comparison across models with varying numbers of factors
suggests that increasing the number of factors from one to nine yields little improvement,
as the corresponding Sharpe ratio reduction is small—even the nine-factor models imply an
annualized Sharpe ratio for zero-investment, zero-beta portfolios around 1.

Figure 5 visualizes the misspecification measure by plotting the out-of-sample, zero-
investment zero-beta portfolios in the mean-standard deviation diagram for the FF, PCA,
IPCA, and AE models with six factors. I construct these portfolios for each factor model in
the following steps. First, in each expanding estimation window, I compute the null space of

estimated betas!'”. Second, I randomly simulate 50,000 linear combinations of basis vectors

1"The null space of betas is characterized by a set of basis vectors. Any linear combination of the basis
vectors will be zero-beta by definition.
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Figure. 5. Out-of-Sample Zero-Investment, Zero-Beta Portfolios (Six Factors)
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Notes: This figure shows the out-of-sample, zero-investment zero-beta portfolios in the
mean-standard deviation diagram for the FF, PCA, IPCA, and AE models with six factors.

around the zero-vector in the beta null space. This makes sure that the simulated portfolios
are not too far away from the origin. Next, I apply these beta-neutral weights to portfolio
returns in out-of-sample periods. Finally, I evaluate the mean and standard deviation of
these portfolios ex post. Consistent with our analytical results in Figure 3, zero-investment
zero-beta portfolios fall into a triangular cone area with line zero-beta frontiers. Visible
deviations of these cones from the horizontal zero line indicate model misspecification, since
correctly specified models should yield zero-beta portfolio mean returns equal to zero. The
slope of these zero-beta frontiers correspond to the out-of-sample maximum Sharpe ratio
values reported in Table 3.

In summary, the empirical assessment of factor model misspecification yields two key
findings for the empirical asset pricing literature. First, prominent factor models exhibit
economically large pricing errors that can be profitably exploited through investment strate-
gies, indicating substantial model misspecification. Second, neither the adoption of advanced
machine learning techniques nor the inclusion of additional factors (up to nine in this anal-

ysis) materially alleviates this misspecification.
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Figure. 6. Out-of-Sample Zero-Beta Rate across Different Asset Universes
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Notes: This figure shows the out-of-sample estimated zero-beta rates obtained from
unit-investment, minimum-variance zero-beta portfolios across two asset universes that differ in
their GMV portfolio returns. In the first asset group (black dashed line), which includes the full
set of 273 characteristic-sorted portfolios, the mean GMV portfolio return is lower (10.1%). In the
second asset group (blue dashed line), consisting of the 136 high-variance portfolios, the mean
GMV portfolio return is higher (12.3%). Four classes of factor models—FF, PCA, IPCA, and
AE—with 1, 3, 6, and 9 factors are analyzed. The estimated zero-beta rates are represented by
circles, squares, diamonds, and triangles, respectively.

3.5.  Inspecting the Robustness of Zero-Beta Rate Estimation

Section 2.3 shows that factor model misspecification tends to bias upward the estimated
zero-beta rate obtained from the unit-investment, minimum-variance zero-beta portfolio.
Greater misspecification may push the estimated zero-beta rate toward the return on the
global minimum-variance (GMV) portfolio, rgyy. Building on this insight, I hypothesize
that the observed robustness of zero-beta rate estimates across different factor models arises
because these models exhibit similarly large degrees of misspecification, which causes the
estimated zero-beta rate to appear close to the mean return of the GMV portfolio.

To inspect the underlying source of robustness, I examine two sets of characteristic-sorted
portfolios that differ in their GMV portfolio returns. Specifically, I rank the characteristic-
sorted portfolios by their return variances and select the 130 portfolios with the highest
variances as an alternative universe of test assets. The first asset group thus contains the

full set of 273 characteristic-sorted portfolios, while the second group includes only the 136
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high-variance portfolios. I construct the GMV portfolios for both groups in-sample and out-
of-sample. The analytical portfolio weights for the GMV portfolio are given by 7 '¢/t/S 4.
For the in-sample construction, the full-sample estimate of ¥ is used. For the out-of-sample
construction, I estimate X using expanding windows and apply the resulting weights to the
following month’s returns. The resulting out-of-sample mean returns of the GMV portfolio

8 This partition enables an

are 10.1% and 12.3% for the two asset groups, respectively.!
examination of whether zero-beta rate estimates differ systematically across asset universes
characterized by distinct GMV portfolio returns.

Figure 6 shows the out-of-sample estimated zero-beta rates obtained from unit-investment,
minimum-variance zero-beta portfolios across two asset universes that differ in their GMV
portfolio returns. In the first asset group (black dashed line), which includes the full set
of 273 characteristic-sorted portfolios, the mean GMV portfolio return is lower (10.1%). In
the second asset group (blue dashed line), consisting of the 130 high-variance portfolios, the
mean GMYV portfolio return is higher (12.3%). Across both asset universes, the estimated
zero-beta rates appear robust to the choice of factor model and to the number of factors.
The literature tends to interpret the estimation robustness as evidence that these estimates
capture the true, unobserved risk-free rate. If that were the case, the zero-beta rates should
be similar across different asset universes. However, the results show that the zero-beta rates
are systematically higher in the universe with the higher GMV portfolio return. Moreover,
the average estimated rates lie close to the mean GMYV portfolio returns within their respec-
tive asset groups. This pattern suggests that the estimated zero-beta rates may primarily
reflect the mean return of the GMV portfolio rather than the true risk-free rate, providing
empirical support for my analytical conjecture that substantial model misspecification biases

zero-beta rate estimates upward.

3.6.  Simulation Analysis

I further analyze the relationship between the estimated zero-beta rate and factor model
misspecification through simulation exercises. The purpose of these simulations is twofold.
First, they demonstrate that when a factor model is correctly specified, it can recover the
true, unobserved risk-free rate by estimating the expected return of the unit-investment,
zero-beta portfolio. This result confirms that the estimation procedures themselves are sta-

tistically valid—there is nothing inherently wrong with the methods. Second, the simulations

18 Although the literature typically reports full-sample zero-beta rate estimates, I primarily focus on the
zero-beta rate implied by out-of-sample, unit-investment zero-beta portfolios. This approach provides a more
realistic measure of the zero-beta return that investors could feasibly earn in practice. In-sample estimates
are also reported in Appendix D.2.
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shed lights on quantifying the extent to which model misspecification can bias zero-beta rate
estimates upward.

I conduct two distinct sets of simulations. The first simulates stock returns based on
a return-generating process implied by a factor model, while the second directly calibrates
and simulates the parameters of the mean—variance frontier (MVF). Both exercises are de-
signed to evaluate how model misspecification distorts the estimated zero-beta rate. In the
simulated-return framework, model misspecification is interpreted as omitted risk factors.
Given any misspecified model, I estimate the zero-beta rate and the maximum Sharpe ratio
of the zero-investment, zero-beta portfolio following the same empirical procedures described
earlier. In contrast, in the MVF-based simulation, model misspecification is interpreted as
portfolio inefficiency, which allows for analytical expressions of both the zero-beta rates and

the maximum Sharpe ratios.

3.6.1.  Simulating Stock Returns

Following standard practice of simulation in the literature, I assume a return-generating
process based on a factor model. Specifically, I simulate stock returns according to a “true”
12-factor model that includes the market, size, value, profitability, investment, momentum,
betting-against-beta (BAB), management-based mispricing, performance-based mispricing,
idiosyncratic volatility, liquidity and quality factors'®. Factor construction follows the pro-
cedures described in Section 3.1. In this artificial economy, these 12 factors represent the
complete set of priced risks. Using time-series regressions, I estimate factor loadings (5;) and
residual volatilities (o;) for each of 273 characteristic-sorted portfolio over the 780-month pe-
riod from January 1960 to December 2024. I treat these estimated betas as the true risk
exposures and resample factor return series using the empirical means and standard devia-
tions of the 12 factors. Portfolio returns are then simulated using the true betas, resampled
factor realizations, and calibrated residual volatilities according to the following process:
R,y =1y + BIF, + 0,64, where ¢, is drawn from a standard normal distribution. The true
risk-free rate, r¢, is assumed constant and set equal to the average 1-month Treasury bill
yield of 4.27% (annualized) over the 780-month period. This procedure yields simulated
returns for 273 portfolios over 780 months.

Suppose an econometrician is unaware of the true 12-factor return structure and attempts
to estimate the zero-beta rate using an incomplete—and therefore misspecified—factor model.
I start with measuring the degree of model misspecification by the number of omitted factors.

Suppose the market factor is always included in the model. Among the remaining 11 factors,

19The 12 factors are constructed using characteristics “market_equity”, “be_me”, “ope_me”, “at_grl”,
“ret_12_17, “betabab_1260d”, “mispricing_ mgmt”, “mispricing_perf’, “ivol ff3_.21d”, “alig_at”, and “qmj”
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Figure. 7. Simulating Stock Returns
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Notes: This figure illustrates the relationship between zero-beta rate estimation and factor model
misspecification in a simulation setting where stock returns are generated from a 12-factor model.
Panel (a) quantifies misspecification by the number of omitted risk factors and plots the median
estimated zero-beta rate against the number of missing factors. Panel (b) quantifies
misspecification by the maximum Sharpe ratio attainable from zero-investment, zero-beta
portfolios, showing the pairs of the estimated zero-beta rates and the corresponding Sharpe ratios.
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1 2

factors, and so forth. For each group of incomplete models with the same number of missing

there are ( ) = 11 possible ways to omit one factor, ( ) = 55 possible ways to omit two
factors, I estimate the zero-beta rates and record the median value (results are similar when
using the mean). Panel (a) of Figure 7 plots the median estimated zero-beta rate against the
number of omitted factors. The upward-sloping curve provides clear evidence that greater
model misspecification biases zero-beta rate estimates upward. When no factors are omitted
(the correctly specified model), the estimated zero-beta rate successfully recovers the true,
unobserved risk-free rate.

Connecting to earlier analysis, I also compute the measure of model misspecification
proposed in this paper—the maximum Sharpe ratio attainable by zero-investment, zero-beta
portfolios. This metric quantifies the magnitude of investment opportunities left unexplained
by a misspecified model. For each misspecified specification, I obtain a pair consisting of
the estimated zero-beta rate and the corresponding maximum Sharpe ratio. Panel (b) of
Figure 7 displays the scatter plot of these pairs, revealing a strong positive relationship
between model misspecification and zero-beta rate estimates. The tight, upward-sloping
pattern indicates that as the degree of misspecification increases (i.e., as the beta-neutral
Sharpe ratio rises), the estimated zero-beta rate becomes progressively higher, rising from

its true value of 4.27% to over 8% when the maximum Sharpe ratio exceeds 1.2 (annualized).
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Figure. 8. Simulating Mean-Variance Parameters
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Notes: This figure illustrates the relationship between zero-beta rate estimation and factor model
misspecification in a simulation setting where mean-variance frontier parameters are calibrated.
Panel (a) plots the Cumulative Distribution Function (CDF) of the estimated zero-beta rates
from 100,000 inefficient portfolios p that are uniformly distributed inside the mean-variance
frontier. Panel (b) shows the probability that the estimated zero-beta rate (r,) exceeds a given
threshold (z), as a function of the maximum Sharpe ratio attainable by zero-investment,
zero-beta portfolios.

This result is consistent with the empirical evidence that most models exhibit an annualized
maximum Sharpe ratio between 1.0 and 1.2 (Table 3), while the corresponding estimated

zero-beta rates range from approximately 8% to 10% per year (Figure 6).

3.6.2.  Simulating Mean-Variance Parameters

The second simulation abstracts from a specific factor structure to provide a more general
analysis. Instead of simulating returns, I directly calibrate the geometric parameters of the
mean-variance frontier (MVF) itself. This allows us to assess the statistical distribution
of ZBR estimates conditional on the true shape of the investment opportunity set. The
mean-variance frontier is determined by three parameters: a = ¢/¥¢, b = /Zp, c = p'Ep. 1
calibrate a and b using the global minimum-variance (GMV) portfolios since rgpy = b/a and
o2 v—1/a. Assuming rgyy = 11% and ogary = 6.5% (annualized) solves a and b. T assume
the true risk-free rate (ry) is 3% annually and the return of the true Tangency portfolio (7,+)
is 20% annually. Thus, parameter c is pinned down by ¢ = r¢ (b — ary) + br,» (proved
in Appendix B.1 Equation B.9). In the mean-variance space, a correctly specified model
corresponds to the true Tangency portfolio p*, and any misspecified model is associated with

an inefficient portfolio p. With the calibrated MVF, I randomly generate a large number of

31



inefficient portfolios p with r, and o,. This approach allows us to compute zero-beta rate

estimates as well as Sharpe ratios using analytical expressions:

T, — T
2 P GMV
T =TGMV — OGMV —y 35— (14)
Op — O0gmv
5 2 2
ac—b O — 0GMYV
5. = - (1 R A 4 (15)
a 02 —o
» aMV

where S, denotes the maximum Sharpe ratio attainable by zero-investment, zero-beta port-
folios given a factor model. Proposition 3 shows that this slope equals to the asymptote of
the unit-investment, zero-beta frontier. (Appendix B.7 proves Equation 15).

Figure D.2 illustrates the procedure of randomly generating inefficient portfolios. Each
inefficient portfolio (misspecified model) produces a pair of the zero-beta rate estimate and
the maximum Sharpe ratios of zero-investment, zero-beta portfolios. Assuming that the
inefficient portfolio is uniformly distributed inside the mean-variance frontier, Figure 8 Panel
(a) plots the Cumulative Distribution Function (CDF) of the estimated zero-beta rates from
100,000 inefficient portfolios p. The distribution of zero-beta rates is clustered visibly in areas
with high zero-beta rate estimates (close to the return of the GMV porytfolio). The CDF’s
shape—rising slowly at first and then accelerating steeply at high values—indicates that
a large mass of the probability distribution is concentrated at high zero-beta rate values.
Estimates of 10-11% (= rgayv) are common in calibrated true world with low risk-free
rate. Panel (b) explicitly links this phenomenon to the maximum Sharpe ratio. It shows
the probability that the estimated zero-beta rate (r,) exceeds a given threshold (z), as a
function of the maximum Sharpe ratio of the economy. The results are striking. When we
empirically observe an annualized maximum Sharpe ratios of 1.2 (indicating a high degree of
misspecification), the probability of the zero-beta rate estimate being greater than 8% (the
red line) is over 80%. Conversely, in a low-misspecification economy with a Sharpe ratio of
0.4, the probability of the ZBR exceeding 8% is effectively zero.

Taken together, these two simulation exercises provide robust evidence that high esti-
mates of the zero-beta rate are likely to be a direct consequence of factor model misspecifi-

cation rather than a truly high risk-free rate.

4. Equity Risk Premium Puzzle and Risk-Free Rate

Previous sections have shown, both theoretically and empirically, that even in a low risk-
free rate environment, it is highly likely to obtain a high estimated zero-beta rate—often close

to the mean return of the global minimum-variance (GMV) portfolio—when the underlying
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factor model is substantially misspecified. the zero-beta rate implied by a factor model
provides little definitive information about the true risk-free rate, and hence offers limited
insight into the magnitude of equity risk premium or convenience yield. In this section, I
turn to a conceptually complementary question: could the true risk-free rate itself be high?

I argue that a high risk-free rate intensifies the equity risk premium puzzle, thereby cre-
ating greater tension with structural models in macro-finance. At first glance, it is tempting
to assume that a high risk-free rate necessarily implies a low equity risk premium. This rea-
soning clearly applies to the market risk premium due to a negative mechanical relationship
between the risk-free rate and the market excess return. The market portfolio itself, however,
does not coincide with the true tangency portfolio—it may not even lie close to the tangency
portfolio in the mean—variance space, particularly given the massive misspecification of the
CAPM. When considering the risk premium on the true tangency portfolio, the relationship
in fact reverses: a higher risk-free rate can imply a larger equilibrium equity risk premium,
rather than a smaller one. To formalize this idea, I start from deriving an analytical relation-
ship linking the risk-free rate ry, the expected return on the GMV portfolio rg,,, and the
expected return on the (unobserved) tangency portfolio (i (The complete proof is provided
in Appendix B.4).

Proposition 4. In a mean—variance framework, let a = ¢/3t, b = '3, ¢ = /3. Denote
the Tangency portfolio as p*, risk-free rate as r¢, expected return and volatility of the GMV
portfolio as rayyv and oGy, respectively. Assume that rgay > ry. The term (ac — b?)/a
represents the squared slope of the asymptote of the mean—variance frontier and can be in-
terpreted as the maximum Sharpe ratio attainable by all zero-investment portfolios. If there

exists a lower bound such that (ac —b*)/a > L?, then

2 2
oamvl

Z 20GMVL (16)
remv — Ty

Tpr —Tp 2 Tamy —Tp+

Equation (16) encapsulates some fundamental tensions in asset pricing. First, consider
the function f(z) = 4 C/x, where & = 74, — 7y and C = o7, L*. This function is convex
(U-shaped) and has its minimum at = = VC = OgmpL. This defines the minimum possible
tangency portfolio risk premium (r; — ry > 20amyL). Interestingly, the lower bound for
tangency portfolio risk premium does not depend on the risk-free rate. If the investment
opportunities implied by L are economically meaningful, then the tangency portfolio risk
premium cannot be small. For instance, if L ~ 0.5, ogyy ~ 7%, then T, —Tp > 7%.
Since L represents the maximum Sharpe ratio attainable by all zero-investment portfolios,
it should be bounded below by the maximum Sharpe ratio of zero-investment, zero-beta

portfolios. Empirical evidence in Section 5 will indicate that such Sharpe ratio opportunities
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may exceed 0.5 after accounting for different types of implementation costs, implying even
larger tangency portfolio risk premia. Such high risk premia imply high prices of risk that
are difficult to reconcile within standard macro-finance structural models. Second, if we
accept a high risk-free rate that is close to 74, the GMV portfolio premium x = 7y, — 75
becomes very small. As x shrinks, the term C'/x increases, generating even larger tangency
portfolio risk premia 75 — 7.

In summary, higher risk-free rate implies larger equity risk premium for researchers to
explain. In other words, a high risk-free rate magnifies the equity risk premium puzzle,

rather than resolving it.

5. Investment Implications

Section 3.4 demonstrates that prominent factor models are substantially misspecified, as
they imply high Sharpe ratios from zero-investment, zero-beta portfolios. The annualized
in-sample and out-of-sample Sharpe ratios of these portfolios exceed 3 and 1, respectively,
as reported in Table 3. In this section, I further examine the investment implications of
such misspecification by asking whether these zero-beta strategies remain profitable after

accounting for realistic implementation costs.

5.1.  Modeling Transaction Costs

Suppose 7; denotes an N X 1 vector of portfolio allocation (dollar amounts) across in-
dividual stocks. The N x 1 turnover vector of individual stocks required to rebalance the

investment portfolio is:

Tl = M1 — T 0 (L4 14) (17)

where ¢ an N x 1 vector of ones, and r; the N x 1 vector of individual returns. o is the
component-wise product. 7, o (¢ + r;) represents the effective holdings prior to rebalancing.

An important insight from DeMiguel et al. (2024) is that netting trades across multiple
portfolios—a form of trading diversification—can yield substantial transaction-cost savings.
Following this idea, I first net the rebalancing trades across the 273 characteristic-sorted port-
folios before applying transaction costs at the individual-stock level. This procedure captures
the cost reduction from offsetting trades among portfolios while accurately accounting for
the actual costs incurred when adjusting positions in the underlying stocks.

I consider two types of transaction costs. First, proportional trading costs increase pro-

portionally to turnover trades:
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fr) = |[@com), (18)

where || - ||, = 2N, | - | denotes the I-norm, and @, is a N x 1 vector of individual
stock-level transaction-cost parameters, measured by the average low-frequency effective
bid—ask spreads (Chen and Velikov, 2023). The individual transaction-cost parameter, ®;,
is measured using the average low-frequency (LF) effective bid—ask spreads described in
Chen and Velikov (2023). They provide both high-frequency (HF) measures, derived from
intraday trade and quote data, and low-frequency (LF) measures, based only on daily price
and volume data. Since HF measures are available only from 1983 onward, I use the average
of four LF measures (Hasbrouck, 2009; Corwin and Schultz, 2012; Kyle and Obizhaeva,
2016; and Abdi and Ranaldo, 2017), which are available across my full sample. Chen and
Velikov (2023) finds that LF measures tend to be biased upward compared to HF measures
in the modern era of electronic trading (post-2005). Moreover, Frazzini et al. (2018) argues
that actual transaction costs may be substantially lower than suggested by previous studies.
Consequently, the transaction costs in this analysis may be overestimated, implying that
the investment performance reported in Section 3 could be understated. Figure D.3 shows
the time variation of the mean, median, 5th percentile, and 95th percentile of individual
transaction costs from January 1960 to December 2024.

Because the proportional cost function is non-linear due to the absolute value operator,
I apply transaction costs after constructing the optimal portfolio weights from the standard
mean—variance optimization problem. This approach is conservative, as the resulting invest-
ment performance serves as a lower bound for the true performance that would obtain if
transaction costs were incorporated directly into the portfolio optimization stage.

Second, I consider price impact costs that are quadratic functions of turnover trades:

1

f(re) = §T;At'rt (19)

where %Aﬂ't represents the price impact, and A; is a N x 1 vector of individual stock-level
Kyle’s lambda, calibrated such that the market impact, %Atn, is 0.1% when trading 1%
of the daily dollar volume of a stock (Jensen et al., 2024).2° The expected daily volume is
defined as the average daily dollar volume over the preceding six months.

Because the price impact cost function is quadratic in portfolio allocations, I incorporate

these costs in the portfolio optimization problem:

20T am using the same example as in Jensen et al. (2024): trading $5 million over a day in a stock with a

daily volume of $500 million moves the price by § z=£2— leading to a transaction cost of 12 § z0:2—x ($5m)? =
$5000.
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st. Wie=0, W'B=0g
where 7 is the risk aversion coefficient. W denotes investor wealth, which directly enters
into the optimization problem because of the quadratic form of trading costs. The analytical

solution for the optimal zero-investment, zero-beta portfolio weights is:

w? = %21 1-e@se) o (21)
Q=3 +WA/y (22)

To evaluate investment performance with price impact costs, I consider three investors
who have $5, $50, and $100 billion dollars at the end of 2024. T assume that investors’ wealth
grows at the same rate as the market, i.e. Wy = Wi_1(1 + R,,+), where R, denotes the

realized market return.

5.2.  Zero-Investment, Zero-Beta Investing

Table 4 reports the annualized maximum Sharpe ratios of zero-investment, zero-beta
portfolios implied by the FF, PCA IPCA, and AE models with 1 and 6 factors. Rows (1)
and (2) present the in-sample and out-of-sample Sharpe ratios without transaction costs,
which were previously discussed in Table 3. Column (3) incorporates proportional trading
costs, while Columns (4) through (6) account for price impact costs under scenarios where
investor wealth reaches $5, $50, and $100 billion, respectively, by the end of 2024. To ensure
comparability across models and cost specifications, all optimal portfolio weights are rescaled
to target a 15% annualized volatility within each rolling-window estimation period.

During the out-of-sample period from January 1990 to December 2024, the zero-beta
portfolios deliver consistently strong investment performance, even after accounting for trans-
action costs. With the exception of the case involving a $100 billion investor (by the end of
2024), the Sharpe ratios across all specifications exceed that of the market portfolio bench-
mark, whose annualized Sharpe ratio is 0.53 before costs and 0.52 after costs.?! For example,
the zero-beta strategies achieve annualized Sharpe ratios between 0.68 and 1.03 when propor-
tional costs are applied. For a $50 billion investor with price impact costs, the corresponding
Sharpe ratios range from 0.56 to 0.90.

As the number of factors increases, performance declines modestly, reflecting smaller

degrees of model misspecification. The particularly strong performance of the one-factor

2ITransaction costs associated with trading the market portfolio are minimal.
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Table 4: Maximum Sharpe Ratios with Transaction Costs (Annualized)

_ FF PCA IPCA AE

Metrics

1-factor 6-factor 1-factor 6-factor 1-factor 6-factor 1-factor 6-factor
(1) 3.31 3.26 3.31 3.18 3.30 3.26 3.31 3.29
(2) 1.27 1.20 1.26 1.16 1.28 1.12 1.27 1.09
(3) 0.96 0.81 0.96 0.78 1.02 0.70 1.03 0.68
(4) 1.12 1.04 1.12 1.05 1.18 0.98 1.18 0.95
(5) 0.75 0.70 0.75 0.69 0.91 0.56 0.90 0.61
(6) 0.58 0.52 0.58 0.48 0.74 0.32 0.73 0.40
(1): In-sample.
(2): Out-of-sample, no transaction costs.
(3): Out-of-sample, proportional costs.
(4): Out-of-sample, price impact costs (wealth by 2024: $ 5 billions).
(5): Out-of-sample, price impact costs (wealth by 2024: $ 50 billions).
(6): Out-of-sample, price impact costs (wealth by 2024: $ 100 billions).

Notes: This table reports the annualized maximum Sharpe ratios of zero-investment, zero-beta
portfolios implied by the FF, PCA, IPCA, and AE models with 1 and 6 factors. Both in-sample
and out-of-sample portfolio constructions are considered. Transaction costs include proportional
trading costs and price impact costs. Portfolio weights are scaled to target an annualized
volatility of 15%.

strategies across all models is notable. Although such parsimonious models fall short of
capturing the full risk structure of returns, they can yield highly profitable and practically
implementable factor-neutral investment strategies. From an investment standpoint, this
suggests that simple market-neutral strategies may suffice, while extending to multi-factor,
beta-neutral portfolios offers limited incremental benefit in real-world settings.

Overall, the evidence suggests that substantial factor model misspecification can be prof-
itably exploited through zero-beta investment strategies, which represent feasible and at-
tractive opportunities—particularly for small- and medium-sized investors—and are most

effective in parsimonious one-factor implementations.

5.2.1.  Risk-adjusted Returns

To further assess the performance of investing in zero-investment, zero-beta portfolios,
Table 5 reports their monthly risk-adjusted returns (alphas, in percent) from time-series
regressions on common risk factors: the Fama—French six factors (MKT, SMB, HML, RMW,
CMA, UMD). Rows (1) and (2) present the in-sample and out-of-sample alphas without

transaction costs. Column (3) incorporates proportional trading costs, while Columns (4)
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Table 5: Time-Series Regression Alphas (Monthly, %)

Metrics FF PCA IPCA AE
1-factor 6-factor 1-factor 6-factor 1-factor 6-factor 1-factor 6-factor

(1) 3.09%** 3.267%** 3.09%H* 3.0k 3.08%H* 3.02%%* 3.09%H* 3.10%%*
(14.26)  (14.52)  (14.24)  (15.82)  (14.22)  (14.54)  (14.25)  (14.64)

(2) 1.46%** 1.64%%* 1.46%%* 1.49%** 1.46%%* 1.19%%* 1.45%%* 1.24%%%*
(4.54) (4.71) (4.55) (4.32) (4.50) (4.39) (4.50) (4.12)

(3) 1.29%** 1.46%** 1.29%%* 1.26%** 1.27%F* 0.88*** 1.29%#* 0.86%**
(4.25) (4.32) (4.25) (3.79) (4.33) (3.45) (4.33) (3.30)

(4) 1.05%** 1.40%** 1.06*** 1.22%** 1.13%** 0.89%** 1.13%** 0.94%**
(3.94) (4.46) (4.00) (3.93) (4.20) (3.73) (4.18) (3.45)

(5) 0.43** 0.94%** 0.46%** .72 0.65%** 0.41%* 0.63*** 0.43**
(2.24) (3.50) (2.44) (2.56) (3.45) (2.04) (3.36) (1.99)

(6) 0.19 0.66*** 0.22 0.41 0.43%** 0.18 0.41%** 0.17
(1.09) (2.55) (1.29) (1.42) (2.57) (0.88) (2.43) (0.84)

(1): In-sample.

(2): Out-of-sample, no transaction costs.

(3): Out-of-sample, proportional costs.

(4): Out-of-sample, price impact costs (wealth by 2024: $ 5 billions).

(5): Out-of-sample, price impact costs (wealth by 2024: $ 50 billions).

(6): Out-of-sample, price impact costs (wealth by 2024: $ 100 billions).

Notes: This table reports monthly alphas (%) from time-series regressions of zero-beta portfolio
returns on the Fama—French six factors. The models include FF, PCA, IPCA, and AE with one
and six factors. Both in-sample and out-of-sample portfolio constructions are considered.
Transaction costs include proportional trading costs and price impact costs. Newey-West

t-statistics are shown in parentheses. Significance levels: *** p < .01, ** p < .05, * p < .1.

through (6) account for price impact costs under scenarios where investor wealth reaches
$5, $50, and $100 billion, respectively, by the end of 2024. Alphas are highly positive
and statistically significant across all models except for the case involving a $100 billion
investor (by the end of 2024). Risk exposures to most factors are negligible and adjusted
R? remains low (not shown). These results reinforce the interpretation that the portfolios’

strong performance is not driven by traditional factor risk exposures.

5.2.2.  Portfolio Positions

Since shorting stocks is often more expensive than long stocks, the literature has dis-
covered that short-sales costs may eliminate the abnormal returns on investment strategies

(Muravyev et al., 2025). Although I do not directly compute the shorting costs in the zero-
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Table 6: Maximum Short Positions and Leverage Ratios (Six Factors)

) Panel A: Maximum Short Positions (%) Panel B: Leverage Ratios

Metrics

FF PCA IPCA AE FF PCA IPCA AE
(1) 3.28 3.44 3.33 3.29 3.81 3.91 3.85 3.84
(2) 3.25 3.25 3.07 3.12 4.10 4.10 3.78 3.81
(3) 2.47 2.57 2.26 2.36 3.08 3.11 2.76 2.77
(4) 1.82 2.02 1.59 1.68 2.31 2.42 2.01 1.97
(5) 1.69 1.93 1.44 1.52 2.19 2.30 1.84 1.81
(1): In-sample.
(2): Out-of-sample, no transaction costs.
(4): Out-of-sample, price impact costs (wealth by 2024: $ 5 billions).
(5): Out-of-sample, price impact costs (wealth by 2024: $ 50 billions).
(6): Out-of-sample, price impact costs (wealth by 2024: $ 100 billions).

Notes: This table reports the maximum short positions (Panel A) of zero-beta portfolios on
individual stocks and the portfolio leverage ratio (Panel B) for FF, PCA, IPCA, and AE models
with 6 factors. Both in-sample and out-of-sample portfolio constructions are examined,

considering cases without transaction costs as well as with price impact costs.

investment zero-beta portfolios due to data availability, I examine the portfolio positions and
leverage ratios of these portfolios and find that short-sales costs may not be a big concern.

A legitimate concern with zero-investment portfolios is that they may involve unreal-
istically large positions in individual stocks. However, Panel (A) of Table 6 reports the
maximum short positions assigned to individual stocks within the zero-beta portfolios for all
models with six factors. The results show that the largest short position does not exceed
3.3% of the portfolio’ value, indicating that these portfolios are well diversified and free from
extreme concentration risk.

Because zero-investment, zero-beta portfolios are inherently long—short strategies, I also
examine their leverage ratios. Following Fama and French (2015), the leverage ratio is defined
as the total value of short positions divided by the total value of the portfolio. Panel (B)
of Table 6 shows that for all models with six factors, the leverage ratios range from 1.84 to

4.10, which are well within reasonable and implementable levels.

6. Conclusion

This paper revisits the long-standing zero-beta rate puzzle through the lens of factor
model misspecification. I demonstrate that the persistent finding of high estimated zero-

beta rates across a wide range of models may not reflect a high unobserved risk-free rate
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but rather the consequence of common model inefficiencies. Theoretically, when a factor
model is misspecified, the zero-beta rate is not uniquely defined, and the common practice
of focusing on the minimum-variance zero-beta portfolio tends to introduce an upward bias.
The bias magnitude depends systematically on the degree of inefficiency: as the degree of
model misspecification increases, the estimated zero-beta rate approaches the mean return
of the global minimum-variance portfolio.

To quantify this mechanism, I introduce a new measure of model misspecification based on
the maximum Sharpe ratio attainable by zero-investment, zero-beta portfolios. This measure
provides a direct, investment-based link between statistical misspecification and economic
inefficiency. Empirical analysis using a comprehensive cross-section of characteristic-sorted
portfolios shows that all major factor models—including machine-learning-based ones—remain
substantially misspecified, with zero-beta portfolios delivering Sharpe ratios exceeding one
even out of sample. T'wo simulation exercises confirm that such degrees of misspecification
are sufficient to fully reproduce the empirically observed high zero-beta rates.

Finally, the paper documents that model misspecification generates economically signif-
icant and implementable trading opportunities. Zero-investment, zero-beta strategies that
exploit model-implied mispricing yield persistently positive alphas and high Sharpe ratios
even after realistic transaction costs.

Overall, this study transforms the zero-beta rate puzzle from a mystery of financial equi-
librium into a measurable outcome of factor model misspecification. What appears as a stable
empirical fact—the persistently high zero-beta rate—is, in fact, the byproduct of a shared
structural flaw in factor models. The results caution against using factor-model-implied zero-
beta rates to infer fundamental quantities such as the risk premium or convenience yield.
At the same time, I show that systematic pricing errors embedded in these models can be

harnessed to design profitable and economically interpretable investment strategies.
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Appendix A. Data

A.1. Stock Characteristics
Table A.1: Stock Characteristics
Name Description Paper
age Firm age (since listing), measured in months. Jensen, Kelly and Peder-
sen (2023).
aliq_at Ortiz-Molina liquidity measure scaled by assets Ortiz-Molina and Phillips
(ALIQ/AT). (2014).
alig_mat Ortiz-Molina liquidity measure scaled by market assets Ortiz-Molina and Phillips
(ALIQ/MAT). (2014).
ami_126d Amihud illiquidity (average |R|/VOL) over 126 days. Amihud (2002).
at_be Assets-to-book equity (AT/BE). Fama and French lineage
(shown in JKP).
at_grl 1-year growth in total assets (AT;/ATi_12 — 1). JKP construction.
at_me Assets-to-market equity (AT/ME). JKP construction.

at_turnover

be_grla

be_me

beta_60m

beta_dimson_21d

betabab_1260d

betadown_252d

bev_mev

bidaskhl_21d

capex_abn

capx._grl

capx_gr2

Asset turnover (SALE/AT).

1-year change in book equity scaled by assets ((BE; —
BE;_12)/ATy).

Book-to-market equity (BE/ME).

CAPM beta estimated over 60 months.

Dimson-style beta (21-day window with lead/lag market
adjustments).

Betting-against-beta metric (long low-beta, short high-
beta) over 1260 days.

Downside beta estimated over 252 days (restricted to days
market return negative).

Book enterprise value to market enterprise value
(BEV/MEYV).

Bid-ask high-low spread estimator over 21 days (Corwin
and Schultz method).

Abnormal capital expenditures (deviation from expected

CAPX).

1-year growth in capital expenditures
(CAPX,;/CAPX; 15— 1).

2-year growth in capital expenditures

(CAPX,/CAPX; 5 —1).

JKP construction.
JKP construction.
Rosenberg, Reid and
Lanstein (1985).
Fama-MacBeth / CAPM
estimates (JKP).

Dimson  (1979)  style
(JKP).

Frazzini and Pedersen
(2014) family.

Ang, Chen and Xing
(2006).

Penman, Richardson and
Tuna (2007).

Corwin and Schultz
(2012).
Titman, Wei and Xie
(2004).

JKP construction.

JKP construction.
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Table A.1 — continued from previous page

Column 1 Column 2 Column 1
capx-gr3 3-year growth in capital expenditures JKP construction.
(CAPX;/CAPX; 35 —1).
cash_at Cash and short-term investments scaled by assets Palazzo (2012) and JKP.
(CHE/AT).
chcsho_12m Net stock issues / change in shares over 12 months (CHC- Pontiff and Woodgate
SHO 12m). (2008).
coa_grla Change in current operating assets l-year scaled by as- JKP construction (current
sets. operating assets family).
col_grla Change in current operating liabilities 1-year scaled by JKP construction.
assets.
cop_at Cash from operations scaled by assets (COP/AT). JKP construction / cash-
flow measures.
cop-atll Lagged cash-from-operations scaled by lagged assets JKP construction.
(COP/AT;_12).
corr_1260d Correlation of stock excess returns with market over 1260 JKP construction.
days.
coskew_21d Co-skewness with market over 21 days (co-skew measure). JKP construction (skew-
ness family).
cowc_grla Change in current operating working capital 1-year. Richardson, Sloan, Soli-
man and Tuna (2005).
dbnetis_at Net debt issuance scaled by assets (DBNETIS/AT). JKP  construction  (is-
suance family).
debt_gr3 Growth in book debt over 3 years (DLTT change over 3 Lyandres, Sun and Zhang
years). (2008).
debt_me Debt scaled by market equity (DEBT/ME). Bhandari / JKP family.
dgp_dsale Change in gross profit minus change in sales (AGP — Abarbanell and Bushee
ASALE). (1998) lineage.
divl2m_me Dividend yield over 12 months (DIVia,,/ME). Litzenberger ~and Ra-

dolvol_126d

dolvol_var_126d

dsale_dinv

dsale_drec

dsale_dsga

Average dollar trading volume over
(DOLVOLj24).
Variability (std) of dollar volume over 126 days.

126 days

Change in sales minus change in inventory (ASALE —
AINV).

Change in sales minus change in receivables (ASALE —
AREC).

Change in sales minus change in SG&A (ASALE —
AXSGA).

maswamy (1979).
Chordia, Subrahmanyam
and Anshuman (2001).
Chordia et al. (2001).
Abarbanell and Bushee
(1998).

Abarbanell and Bushee
(1998).

Abarbanell and Bushee
(1998).
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Table A.1 — continued from previous page

Column 1

Column 2

Column 1

earnings_variability

ebit_bev

ebit_sale

ebitda_mev

emp_grl

eq-_dur

eqnpo_12m

f_score

fef_me

fnl grla

gp-at

gp-atll

inv_grl

inv_grla
iskew_capm_21d
iskew_ff3_21d
ival_me
ivol_capm_21d
ivol_capm_252d

ivol_ff3_21d

kz_index

Variability (volatility) of earnings (NI) across periods
(e.g., std of NI).

EBIT scaled by book enterprise value (EBIT/BEV) —
operating profitability measure.
EBIT scaled by sales (EBIT/SALE) — profit margin.

EBITDA  scaled by market enterprise value
(EBITDA/MEV).
Employment (employees) 1-year growth

(EMP,/EMP;_12 — 1).

Equity duration (duration-like measure of equity cash
flows).

Net equity payout over 12 months (EQNPO 12m).

Piotroski F-score (composite score 0-9 from fundamen-
tals).
Free cash flow scaled by market equity (FCF/ME).

Change in financial liabilities 1-year scaled by assets.

Gross profit scaled by assets (GP/AT) — gross profitabil-
ity.

Lagged gross
(GP—1/AT;-12).
Inventory 1-year growth (INV;/INV;_12 — 1).

Change in investment/inventory 1-year scaled by assets.

profit scaled by lagged assets

Idiosyncratic skewness from CAPM residuals over 21
days.

Idiosyncratic skewness from FF3 residuals over 21 days.

Intrinsic value scaled by market equity (/VAL/ME) —
intrinsic value measure.
Idiosyncratic volatility from CAPM residuals (21 days).

Idiosyncratic volatility from CAPM residuals (252 days).
Idiosyncratic volatility from FF3 residuals (21 days).
Kaplan—Zingales (KZ) index of financing constraints

(composite).

Earnings volatility litera-
ture (JKP cites relevant
sources).

Soliman (2008) / JKP.

Soliman (2008).

Loughran and Wellman
(2011) (profitability fami-
lies).

JKP construction (labor
efficiency family).

Dechow, Sloan and Soli-
man (2004).

Daniel and Titman (2006);
Boudoukh et al. (2007).
Piotroski (2000).

Lakonishok, Shleifer and
Vishny (1994).

JKP construction
(financial-liabilities  fam-
ily).

Novy-Marx (2013).
JKP construction.

JKP construction.

JKP construction.

Bali, Engle and Murray
(2016).

Bali, Engle and Murray
(2016).

Frankel and Lee (1998);
JKP notes on scaling.
Ang, Hodrick, Xing and
Zhang (2006).

Ang et al. (2006).

Ang et al. (2006).

Polk and Saa-
Requejo (2001) lineage.

Lamont,
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Table A.1 — continued from previous page

Column 1 Column 2 Column 1

Inoa_grla Change in long-term net operating assets 1-year scaled JKP construction.
by assets.

lti_grla Change in long-term investments 1-year scaled by assets. JKP construction.

market_equity

mispricing_mgmt

mispricing_perf

ncoa_grla

ncol_grla

netdebt_me

nfna_grla

ni_arl

ni_be

ni_ivol

ni_me

nncoa_grla

noa_at

noa_grla

o_score

oaccruals_at

oaccruals_ni

ocf_at

ocf_at_chgl

Market equity (ME) — price times shares outstanding
(PRC x SHARES).

Mispricing composite (management-based signals; multi-
component).

Mispricing composite (performance-based signals).

Change in non-current operating assets 1-year scaled by
assets.

Change in non-current operating liabilities 1-year scaled
by assets.

Net debt scaled by market equity (NETDEBT/ME).

Change in net financial assets 1-year scaled by assets.
First-order autocorrelation of net income (earnings per-
sistence AR(1)).

Net income scaled by book equity (NI/BE) — ROE fam-
ily.

Idiosyncratic volatility of net income (earnings volatility).

Net income scaled by market equity (NI/ME) —
earnings-to-price family.

Change in net non-current operating assets 1-year scaled
by assets.

Net operating assets scaled by assets (NOA/AT).
Change in net
(NOA;/NOA;_12 —1).
Ohlson O-score (bankruptcy/distress probability mea-

operating assets 1-year

sure).
Operating accruals scaled by assets
(OACCRUALS/AT).

Percent operating accruals (operating accruals scaled by
net income).
Operating cash flow scaled by assets (OCF/AT).

Change in operating cash flow to assets over 1 year

(OCF,/AT; — OCF;_15/AT;_15).

CRSP/Compustat  stan-
dard.

Stambaugh and  Yuan
(2017) and JKP.
Stambaugh and  Yuan
(2017) and JKP.

JKP construction.
Richardson et al. (2005)

family.

JKP construction / Pen-
man et al. (2007) family.
JKP construction.
Earnings persistence liter-
ature (JKP).

Haugen and Baker (1996)
lineage.

Francis et al. (2004) style
measures.

Basu (1983) lineage.
JKP construction.

JKP construction.

JKP construction.

Ohlson-style distress mea-
sures (JKP references).
Sloan (1996) / Richardson
et al. (2005) family.
Hafzalla, Lundholm and
Van Winkle (2011).
Bouchaud,
Landier and
(2019) cited in JKP.

JKP construction.

Krueger,

Thesmar
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Table A.1 — continued from previous page

Column 1 Column 2 Column 1

ocf_me Operating cash flow scaled by market equity (OCF/ME). Desai, Rajgopal  and
Venkatachalam (2004)
family.

op-at Operating profit scaled by assets (OP/AT). Ball et al. (2015/2016)
operating-profit family.

op-atll Lagged operating profit scaled by lagged assets JKP construction.

(OP,_1 /AT, 15).

ope_be Operating profit scaled by book equity (OP/BE). Fama and French / Ball et
al. lineage.

ope_bell Operating profit scaled by lagged book equity. JKP construction.

opex.at Operating expenses scaled by assets (OPEX/AT). Novy-Marx (2011) / JKP.

pinix Earnings before tax and extraordinary items scaled by JKP construction.

ppeinv_grla

prc
prc_highpre_252d
qmj

qmj_growth
qmj_prof
qmj_safety

rd5_at

rd_me

rd_sale
resff3_12_1
restf3_6_1
ret_12_1

ret_12_7

ret_1_0

net income including extraordinary items (PI/NIX).
Change in PPE plus inventory 1-year scaled by assets
(PPEINV, — PPEINV,_12)/AT,_12).

Stock price (PRC), typically adjusted close.
Price relative to 252-day high (PRC/ max(PRC2524)).

Quality Minus Junk composite (aggregate of quality sig-
nals).

QMJ growth subcomponent (growth-related z-scores).
QM.J profitability subcomponent (profitability z-scores).
QMJ safety subcomponent (safety/z-score measures).
R&D scaled to assets (5-year aggregated/averaged)
(R&Ds5/AT).

R&D scaled by market equity (R&D/ME).

R&D scaled by sales (R&D/SALE).

Residual momentum: residuals from FF3, 12-month hori-

zon, scaled by residual std (JKP variant).

Residual momentum: residuals from FF3, 6-month hori-
zon.

Price momentum: cumulative return ¢t — 12 to ¢t — 1 (12
months).

Price momentum: cumulative return ¢t — 12 to ¢t — 7.

Most recent monthly return (R;—1-).

JKP  construction  /
investment-change litera-
ture.
CRSP/Compustat  stan-
dard.

George and Hwang (2004)
style measure.

Asness, Frazzini and Ped-
ersen (2019).

Asness et al. (2019).
Asness et al. (2019).
Asness et al. (2019).
Chan, Lakonishok
Sougiannis (2001) family.
Chan et al. (2001).
Chan et al. (2001).
Blitz,
(2011) adjustments noted
in JKP.

and

Huij and Mertens

Blitz, Huij and Mertens
(2011).
Jegadeesh and Titman

(1993) momentum family.
JKP / momentum litera-
ture.

JKP / return family.
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Table A.1 — continued from previous page

Column 1 Column 2 Column 1

ret_3_1 Cumulative return ¢ — 3 to ¢t — 1 (3 months). Momentum / JKP con-
struction.

ret_60_12 Long-horizon momentum/reversal: cumulative return ¢t— Novy-Marx / De Bondt

60 to t — 12. and Thaler lines (JKP).

ret_6_1 Cumulative return ¢ — 6 to ¢t — 1 (6 months). Jegadeesh and Titman
(1993) family.

ret_9_1 Cumulative return ¢ — 9 to ¢t — 1 (9 months). JKP / momentum family.

rmax1-21d Maximum 1-day return within a 21-day window (max;4). JKP (Asness et al. style).

rmax5_21d Maximum 5-day return within a 21-day window (maxs4). Asness et al. (2020) style.

rmaxb_rvol_21d

rskew_21d
rvol_21d

sale_bev

sale_emp_grl

sale_grl
sale_gr3
sale_me

seas_11_15an

seas_11_15na

seas_16_20an
seas_16_20na
seas_1_lan
seas_1_1na
seas_2_5an
seas_2_5na
seas_6_10an
seas_6_10na

taccruals_at

taccruals_ni

tangibility

tax_grla

turnover_126d

Highest 5-day return scaled by return volatility
(RMAX5/RVOL) over 21 days.
Total return skewness over 21 days.

Return volatility (std) over 21 days.

Sales scaled by book enterprise value (SALE/BEV).
Sales per employee growth (l-year) (SALE/EMP
growth).

Sales 1-year growth (SALE;/SALE;_15 — 1).

Sales 3-year growth (SALE;/SALE; 35 — 1).

Sales scaled by market equity (SALE/ME).

Annual seasonality: average returns in months ¢ — 11 to
t — 15 (annual lags).

Non-annual seasonality: months ¢ — 11 to ¢ — 15 non-
annual lags.

Annual seasonality: months ¢ — 16 to ¢t — 20 (annual).
Non-annual seasonality: months ¢ — 16 to ¢ — 20.
One-year lagged return (annual seasonality, month t—12).
One-year non-annual seasonality (non-annual lag).
Annual seasonality: months t — 2 to ¢t — 5.

Non-annual seasonality: months t — 2 to t — 5.

Annual seasonality: months ¢t — 6 to ¢ — 10.

Non-annual seasonality: months ¢ — 6 to ¢t — 10.

Total accruals scaled by assets (TACCRUALS/AT).

Percent total accruals (total accruals scaled by net in-
come).

Asset tangibility measure (PPE and tangible asset share;
JKP formula).

Tax expense change 1-year scaled by assets (tax surprise).

Share turnover averaged over 126 days (TU RN1264)-

Asness et al. (2020) and
JKP.

Bali et al. (2016) family.
Ang, Engle, and colleagues
(JKP references).

JKP construction.
Abarbanell and Bushee
(1998) lineage.

JKP construction.

JKP construction.

JKP construction.

Heston and Sadka (2008).

Heston and Sadka (2008).

Heston and Sadka )
Heston and Sadka )
Heston and Sadka (2008).
Heston and Sadka (2008).
)
)
)

(2008).
(
(
(
Heston and Sadka (2008).
(
(
(

2008).

Heston and Sadka (2008).
Heston and Sadka (2008).
Heston and Sadka (2008).
Richardson, Sloan, Soli-
man and Tuna (2005).
Hafzalla et al. (2011) and
JKP.

Tangibility literature; JKP
construction.

Thomas and Zhang (2011).
Liu (2006).
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Table A.1 — continued from previous page

Column 1 Column 2 Column 1
turnover_var_126d  Volatility of turnover over 126 days (std). Chordia et al. (2001).
zero_trades_126d  Fraction of zero-trade days over 126 days. Lesmond et al. (1999).
zero_trades_21d Fraction of zero-trade days over 21 days. Lesmond et al. (1999).
zero_trades_252d  Fraction of zero-trade days over 252 days. Lesmond et al. (1999).

Appendix B. Proofs

B.1.  Proof of Proposition 1

Proof.

Step 1: Mean-variance frontier.

This proof works with the unit-investment frontier. Deriving the analytical expression
for the mean—variance frontier repeats the same procedure in Chapter 5 of Cochrane (2009).

For a given target return r,., the variance is minimized by solving the following problem:

mnw'¥w st We=1, Wp=ry (B.1)
w

where p is the asset mean returns, 3 is the variance-covariance matrix, and ¢ is a vector of

ones. Set up the Lagrangian:

1
L= Ew'Zw — W't — Ao (W' — 1) (B.2)

The first-order condition is given by:

A A
Yw=ANt+ hp= [l, p,} ' = w=x" |:L u] ' (B.3)
)\2 )\2
/
Premultiply equation (B.3) by | | we have:
m
J 1 v A
Jw= =5 1= e uf ] (B.4)
7 T'p K A2
Denote
Y 1 DI Sa) a b
A=t o) = |70 0 D= (B.5)
m pE e pE ' c
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where a = ¢ 7', b=1X "', and ¢ = uX .
Thus

Bj — A [:] and w, =37 [0 p AT [:*] (B.6)

p*

The variance of this efficient portfolio p* is:

2 /
o —wp*pr*

P
= [1 r;] Al e |:L y,] Al [:*]
L g (B.7)
= [1 r;] Al 7"1*]
'p

= s i 72 (arz* — 2brp + c)

Therefore, the mean-variance frontier corresponds to a parabola.

Step 2: Unit-investment, zero-beta portfolios with respect to an efficient portfolio p*.

The covariance between an arbitrary portfolio j and an efficient portfolio p* is given by:

*
Tp rp

1 1
Ojpr = WiNWyr = W) |:L u] Al [ ] = [1 rj] Al [ *] =c—bry + (arp- —b)r, (B.8)

Here, the third equality follows from w’e = 1, since portfolio j is assumed to be a unit-
investment portfolio. According to equation (B.8), if portfolio j is zero-beta (i.e., has zero
covariance) with respect to the efficient portfolio p*, then o;,~ = 0 implies

e brye (B.9)

7 b — arp-

given that ry« # b/a where b/a is the return of the GMV portfolio.?* Since the efficient Tan-
gent portfolio p* is unique, the corresponding zero-beta rate is also unique. Specifically, under
a correctly specified factor model, there exists a factor portfolio p* on the mean—variance
frontier, and all zero-beta portfolios with respect to p* must have the same expected return.

Thus, the zero-beta rate is uniquely identified and corresponds to the frictionless risk-free

22Throughout the proof, I maintain the assumption that the efficient portfolio p* lies above the GMV
portfolio.
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rate in the economy. This establishes Proposition 1 (7).

Step 3: Unit-investment, zero-beta portfolios with respect to an arbitrary portfolio p.

For unit-investment, zero-beta portfolios with respect to an arbitrary portfolio p targeting
an expected return r,, we solve the following problem:
mnw'¥w st We=1, Wp=r, wIw,=0 (B.10)
w
Set up the Lagrangian:

1
L= Ew'Ew — MWt = X (W —1,) — Mw'Sw, (B.11)

The first-order condition is given by:

A1
Yw=Mt+ op+ 3w, = [L n Ewp} Ao
Az
A1
— =" p Sw |\ (B.12)
Az
-
Premultiply equation (B.12) by | u/ | we have:
(W)X
v 1 v A
wolw=|r|=| >t [L u Ewp} Ao (B.13)
w3 K w, X A3
Denote
J a b 1 A 1
H=| p | X |:L m pr} =1b ¢ 7| = Tp (B.14)
Wy 1 r, o 1 r, | o)
Thus
A1 1 1
X|=H"'|r,| and w,=%" |:I, u Ewp} H' |r, (B.15)
A3 0 0



where I denote w, as the weights of a portfolio z that is orthogonal to p.

The variance of the unit-investment, zero-beta portfolio z is given by:

2 /
0, = w,Xw,

I 1
:[1 T, 0] H'| w | X' [L u Ewp] H!'|r,
> 0 (B.16)
1
= [1 r, 0] H' |r,
| 0

To understand the relationship between o, and r,, H™! needs to be calculated. I start by

expressing the Schur complement of A:

S=o02— [1 rp] Al [1] =0, — ? (ar? — 2br, + ¢) (B.17)

p _ K2 p
T ac—b

Recall from equation (B.7) that the variance of an efficient portfolio p* is o7 = 72 (arf)* — 2brys + ).
ac —
Hence, if we assume the arbitrary portfolio p has the same expected return as the efficient

a
portfolio p*: r, = r,». Then, —— (arﬁ — 2bry, + c) = ¢2., and the Schur complement
ac

p — 12 P
S = O'z — 05*, which measures the horizontal distance between portfolio p and p* with the
same expected return.
Note that:
H| = aco) + 2br, — ¢ — arl — b0,
1 9 2
:—[(aa —1) (002—7“2)—(1902—7") }
op it 2P L (B.18)
=a, =c, =b,
1
= — (a,c, — b*
0_12) ( zv-z Z)
Hence, we can compute H™!:
9 Cy —b, brp—c
-1 _ %p
H = m —bz a, b— arp (Blg)

br, —c b*—ac ac— b

Substitute H™! into equation (B.16) we obtain:
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1 2
— [1 T, 0} H'|r,| = _ % (azrz —2b,7, + cz) (B.20)

0 a,c, — b?
Hence, the unit-investment, zero-beta frontier is characterized by a parabola. The unit-
investment, zero-beta portfolios can attain infinitely many expected returns, rendering the
zero-beta rate indeterminate and unidentified. This establishes Proposition 1 ().

m

B.2.  Proof of Proposition 2

Proof.
This proposition explores the relation between portfolio inefficiency and the level of the
estimated zero-beta rate from the unit-investment, minimum-variance zero-beta portfolio.

Recall from equation (B.20) that the zero-beta frontier with respect to an inefficient portfolio

Tp

5 (ar? — 2br, + ¢). The variance is minimized at
a,c, — b2

2
piso; =

2
b. bo, — 1y

a, aoi—1 ( )
bla-c*—1/a-r
_Y =z fa-r (B.22)
o2 —1/a
2 2

T c0-— 0 T

- Y CMV b (B.23)
9 — 9%Gmv
T'p = TGMV
=Tomv — UéMv—g 2 (B.24)
» — 9amv
where r, is the estimated zero-beta rate, rgyy = b/a, and o2, = 1/a.
— by
For the tangency portfolio p*, recall from Appendix B.1 Step 2 that r; = Z—Tp.
— QTp*
Combined with the MVF formula, 012)* = 72 (arf,* — 2brp- + c), it can be shown that
ac —
b, boy. —1p s Tpr —TGMV

re— 22— = — AR LA B.25
I, acy. — 1 GMy = 9amy 0% — Ogny ( )

Relationships between rgav, 75, and 7,

Tp —TaMV
2

=1y, we have:
2 _
9 — 9amv

~ 2
First, let raymy — o0&y
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T'p —Tamv _ Tamv — Tf

= (B.26)
Op = Oty oty
Rearrange equation (B.24) and (B.25) we know:
Ty —TGMV Ty — T, TGMV_Tf T*—Tf
b =L : =2 (B.27)

oy — 0y oy 0Emv Op

Graphically, this means that in the mean-variance diagram (u-0?), a line crossing GMV
and px intersects with the vertical axis at r¢, and a line crossing GMV and p intersects with
the vertical axis at r,. Hence, r, > 7y if and only if (r, —7.)/0} < (rpe —75) /0.

Lastly, equation (B.24) implies that r, > rgay if and only if 7, < raay.

Zero-Beta Rate and Portfolio Inefficiency

I separately consider two types of portfolio inefficiency.

(1) Risk inefficiency, holdiing the mean relrjfum fized (1, =1y, 0} > 02 ).
r.oar,—

doy - (ac? — 1)2

Consider the derivative: . Assuming that portfolio p lies above the

dr, : : .
GMYV portfolio, r, > rym, = b/a, we know d_rz > (0. Hence, r, increases with the 0127, holding
o

p
the mean return fixed. Since o2 > o7., we have r, > 7.

(2) Return inefficiency, holding the volatility fized (0, = op, 1, < 1 ).

dr 1 r
Consider the derivative: —= = —————. In this case, == < 0 holds unambiguously
dry, aoy —1 dry,
since 0, > 1/a = og4y,. Hence, r, increases as r, falls, holding the volatility fixed. Finally,
Tpe — T
compute r, —r; = % >0
ao, — 1

]

B.3.  Proof of Proposition 3

Proof.

Step 1: Mean-variance frontier.

This proof works with the zero-investment frontier, as opposed to unit-investment fron-
tier. Deriving the analytical expression for the mean—variance frontier follows a procedure
similar to that in Chapter 5 of Cochrane (2009). For a given target return r,-, the variance

is minimized by solving the following problem:

mnw'Y¥w st We=0, Wp=ry (B.28)
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where p is the asset mean returns, X is the variance-covariance matrix, and ¢ is a vector of

ones. Set up the Lagrangian:

1
L= §w’§]w — MWt = X (W' —1p) (B.29)

The first-order condition is given by:

A A
Yw=A\t+ dop= [L p,} ' - w=x" [L p,] ' (B.30)
)\2 >\2
L/
Premultiply equation (B.30) by | | we have:
I
! 0 ! A
L/ w = = L/ 2_1 [L l,l,:| ! <B31)
M Tp* [ A2
Denote
v 3 5 ) LE_lp, a b
N T il = (B.32)
m uE L pX b ¢
where a =132 7', b =X ', and ¢ = X .
Thus
A 0 0
1=A" and wy =X, plA7! (B.33)
A\ P 12 N
2 ’I"p* Tp

The variance of this efficient portfolio p* is:

2 /

— [O 7“;] Al s [1, y,] At [7(‘)*]

:‘(’)’ P (B.34)
= [O r;] At T*]

'p
- ac i b2 7}3*

lac — b?|

Therefore, the mean-variance frontier can be expressed as rp« =
a

op+, which cor-
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responds to a straight line emanating from the origin.

Step 2: Zero-beta portfolios with respect to an efficient portfolio p*.

The covariance between an arbitrary portfolio j and an efficient portfolio p* is given by:

0 0 a
Ojp* = w;Ewp* :w; |:l, y,:| _Af1 [ ] — |:0 Tj:| A*l [ ] — —27"]-1”p* <B35)
r* r* ac—b
P P
Here, the third equality follows from w’t = 0, since portfolio j is assumed to be a zero-
investment portfolio. According to equation (B.35), if portfolio j is zero-beta (i.e., has zero
covariance) with respect to the efficient portfolio p*, then o, ,- = 0 implies r; = 0, given that
a # 0 and ry,- # 0. This establishes Proposition ?? (i). Specifically, if the factor model is
correctly specified, there exists a factor portfolio p* on the mean—variance frontier, and all

zero-beta portfolios with respect to p* must have zero expected returns.

Step 3: Zero-beta portfolios with respect to an arbitrary portfolio p.

For zero-investment, zero-beta portfolios with respect to an arbitrary portfolio p targeting
an expected return r,, we solve the following problem:
mnw'¥w st We=0, Wp=r, wIw,=0 (B.36)
Set up the Lagrangian:

1
L= Ew’Ew — MWt = X (W —7,) — Aw'Sw, (B.37)

The first-order condition is given by:

A
Sw = At + Dot + \Ew, = [L " zwp} o
A3
A
= w=Xx""! [L u Ewp] A2 (B.38)
A3

Premultiply equation (B.38) by | wu/ | we have:

59



folw=|rl=| |z [L 1 zwp} o (B.39)
w3 0 w, A3
Denote
J a b 0 A 0
H=| g | X7 [L m pr} =|b ¢ 1| = Tp (B.40)
> 0 rp, o) 0 r, | o)
Thus
A1 0 0
Xo| =H"'|r,| and w,=%" |:L 7 Ewp} H' |r, (B.41)
A3 0 0

where I denote w, as the weights of a portfolio z that is orthogonal to p.

The variance of the zero-beta portfolio z is given by:

2

ol = w. Xw,
[ 0
:[0 T, O] H!'| y | Z'Z2 [L m Ewp] H' |r,
=8> 0 (B.42)
[ 0
= [0 r, 0] H! |r,
| 0

To understand the relationship between o, and r,, H™! needs to be calculated. I start by

expressing the Schur complement of A:

a

0
_ 2 -1 _ 2 2
S=o, [O Tpi| A [Tp] Op = 75T (B.43)

a_ o
. . . ac y bQ. p* '
Hence, if we assume the arbitrary portfolio p has the same expected return as the efficient
- _ a o _ 4@ o _ 9
portfolio p*: 7, = rp-. Then, p— r, = P b2rp* = O,
S = 0]2) — aﬁ*, which measures the horizontal distance between portfolio p and p* with the

same expected return.
Note that:

Recall from equation (B.34) that the variance of an efficient portfolio p* is ag* =

and the Schur complement
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H| = aco, — arl — b0,

P P
= (ac — b*)o; — ar?

s (B.44)
= (ac —b%)o, — (ac — b)),

= (ac = b*) (o2 — o)

Hence, we can compute H™!:

2,2 3.2
co, —r, —bo,  bry

1
-1 __
H ' = (e~ D) (02— o) —bo?  ao} ar, (B.45)
P P bry ar, ac— b2

Substitute H™! into equation (B.42) we obtain:

=0 . o|H" : % ’ B.46
(E M ’”O " {ac—?)(02 o2 ? (B.46)

Define the zero-beta frontier with respect to an arbitrary portfolio p as the set of zero-beta
portfolios for p that minimize variance for a given level of mean return. Then, the zero-beta

frontier can be expressed as:

. \/ (ac — bi)bf; — oy _ 1 Y (B.47)

From Equation (B.34) we know that the maximum Sharpe ratio of all assets is SR?(p*) =

r c—b?
( P ) = . Thus, we compute the slope of the zero-investment, zero-beta frontier:

O'g* a
2 — 2
e 1 U;; ac—b (B.48)
ri.jon lac — b
= /1- 7"2/02 "1/ (B.49)

= \/1 (?:2( )) SR*(p*) (B.50)

= /SR (p*) — SR2(p) (B.51)

where SR?(p*) denotes the Sharpe ratio of the efficient portfolio p* and SR?(p) denotes the
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Sharpe ratio of the inefficient portfolio p. Therefore, the slope of the zero-investment, zero-
beta frontier—maximum Sharpe ratio attainable by zero-investment, zero-beta portfolios—
quantifies how much a portfolio’s Sharpe ratio falls short of the optimal. Therefore, it
provides a measure of model misspecification.

To complete Proposition 3, it remains to show that the slope of the asymptote for the

unit-investment, zero-beta frontier equals the slope of the zero-investment, zero-beta frontier.

Equivalence of Slopes

First of all, I conjecture that any unit-investment, zero-beta portfolio weights w,, can

be decomposed into two orthogonal components:

Wy = Wz mo + w, (B52)

where w, ,,,,, denotes the unit-investment, minimum-variance zero-beta portfolio weights, and
w, denotes the zero-investment, zero-beta portfolio weights. Let me check the constraints
and confirm this conjecture.

Investment constraints hold: ¢'w,, =1 = t'w, ;my + t'w, = 1+ 0. Zero-beta constraints
hold: B'w,., = 0 = B'w,my + B'w, = Ok + 0. Hence, any zero-investment, zero-beta
portfolio corresponds to a unit-investment, zero-beta portfolio. The weights shift is the
weights of the unit-investment, minimum-variance zero-beta portfolio.

Similar to the property that the GMV portfolio is orthogonal to any zero-investment
portfolio (Wgme'Xw, o« ¢/ Y 'Yw, = Jw, = 0), the unit-investment, minimum-variance
zero-beta portfolio is orthogonal to any zero-investment, zero-beta portfolio. This is proved

using Equation (3):

-1
- / /
w;,mvzwzz [1 O/K < ,;/ 2_1 |:L 18:|) ’ L, E_lzwz (B53)
ke
a
=C- 5| (B.54)
=C 0kt (B.55)
=0 (B.56)

Due to the orthogonal decomposition, we know returns 7., = 7., + 1, and variances:
2 _ 2 2
Uz,u - Uz,mv + az'

From the previous procedure, we know that the zero-investment, zero-beta frontier is a

straight line with slope S,. The formula for this frontier can be written as r, = S, -0,. Since
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this frontier corresponds to the unit-investment, zero-beta hyperbola frontier, we can simply
write the formula for the hyperbola as (7., — 72m0)” = 52+ (02, — 02,,.,)-

According to the properties of a hyperbola, the slope of the asymptote is exactly .S..

Now we complete the proofs of Proposition 3.

O
B.4. Proof of Proposition 4
Proof.
We start with the formula for the tangency portfolio return, r;:
c—bry
* = B.57
(E  — 7 ( )
We can rewrite this using rgm, = b/a, a = 1/0;,,,, and b = 7gmy /05,
— (b - Tgmv
T* — C/a ( /CL)T’f — C/(I Tg Tf <B58)
P bla —ry Tgmv — T'f
Rearranging this gives:
T;(Tgmv - rf) = C/a — TgmoT'f <B59)
We add and subtract rgmv to the right-hand side:
T; (Tgmv - rf) = (C/(l - rjmv) + Timv — TgmoT'f (B60)
T;(Tgmv —ry) = (c/a— szv) + T gmo (Tgmo — 77) (B.61)
Isolating the first term on the right (this is the step seen in the note):
(T; — Tgmo) (Tgmo — Tf) = ¢/a — T;mv (B.62)
Now we show that c/a — 17, , = 5?07,
2 2
9 c b ac—b
— ——_(2) = B.63
cfa- == (1) =22 (B.63)
Using our definitions S? = “Ca;bQ and 07, = 1. we have:

ac — b? ac — b? 1
== () (5) = 5% B0y

This gives us the central identity:
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(1 = Tgmo) (Tgmv — 75) = 5252 (B.65)

gmu

We apply our empirical assumption S? > L? to the identity:
(T; - Tgmv)(rgmv - Tf) 2 L2O—va <B66)

Assuming rg,,, > 1y, we can divide by (rgm, — ry):

L%0?
T; - 7a_g?nv Z e <B67)
Tomo =T

Add (rgmy — rf) to both sides to get the total tangency premium:

L?0?
(T; — Tgmv) T (Tgmo —75) 2 (Pgmo — 1) + — (B.68)
Tgmo —Tf
L%0?
e > Ty — —mr B.69
Tp =Tr =Ty Tyt Fgmo — T ( )

This proves the first part of the proposition.

This part is a direct application of the Arithmetic Mean-Geometric Mean (AM-GM)
inequality, which states that for any non-negative A and B, A+ B > 2/ AB.

Let A= (rgmy —7f) and B = L2y

Tgmo—T§"
L?0? L202
Tgmv — T'f + ﬁ > 2\/(rgmv —7rf) - (ﬁ) (B.70)
gmv gmu

The (rgmy — 7f) terms inside the square root cancel out:

>2,/1%2, . (B.71)

> 2L gmo (B.72)

This proves the second part of the proposition.
Conclusion: We have shown that by combining the standard geometry of the mean-
variance frontier with an empirical lower bound L on the maximum zero-beta Sharpe ratio,

we arrive at the full inequality:

2 2
o
Tps — Ty > Tgmo — Tf + r gmv_ T > ZO'gva <B73)
gmu

O
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B.5.  Minimum-Variance Market-Neutral Portfolio Weights

Proof.

Solve the following variance minimization problem:

mnw'Yw st we=1, wWIw, =0
w

Set up the Lagrangian:

1
L= §w’2w — W't — w'Zw,-

The first-order condition is given by:

Yw=At+ WBwy = w= M+ Aow
From w’t = 1, we have:

1 — At/ wp
175 )
Note that the weights for global minimum variance (GMV) portfolio is:

ME T+ Nlw, =1 = A\ =

DIEY)
115 )

Womv =

Thus,

w= (1= Xat/wp) Wymp + Aowps

Now impose the orthogonality condition:

WBwy =0 = [(1 = Mt/ wye) Wy + Aowy] Tw,-

/
w gmvap*

— )\2 =
!/ / /
(Vwpr ) Wiy By — W Bw-

In summary,
/

wgmv Ewp*

w=(1—kt'wp) Wymp + kwp+, where Kk =

65

/ / /
(Vwp ) W) Bwpe — W wye

(B.74)

(B.75)

(B.76)

(B.77)

(B.78)

(B.79)

(B.80)
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B.6.  Proof of Equation (3)

Proof.

Solve the following variance minimization problem:

mnw'w st We=1, 'B=0g (B.81)

w
where X is the variance-covariance matrix, ¢ is a vector of ones, 3 is a K x 1 vector of betas,

and O is a K x 1 vector of zeros. Set up the Lagrangian:

1
L= Ew’Ew —Mw't — 'B (B.82)

The first-order condition is given by:

Sw =it AB= v gl [ij — w=3"[ g [ij (B.83)

/
Premultiply equation (B.38) by [;/] we have:

> [L ﬂ] [M] (B.84)

»-! [L [3} >_1 [011(] (B.85)

Thus,

> [L QD_ [01](] (B.86)

B.7. Proof of Equation (15)

Proof. Recall from Equation (B.20) that the unit-investment, zero-beta frontier with respect

to portfolio p is

0.2

ot=——"r (azrg —2b.1, + cz) (B.87)

a,c, — b?
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The slope of the asymptote is

a,c, —b?

S2 =

B.
azag (B.88)

Since a, = ao) — 1, b, = bo. — rp, and ¢, = co; — 172, let’s rearrange the denominato:

P

a.c. — b2 = (aos — 1)(cop — 1) — (boo —1)? (B.89)
= acoy + 2br, — ¢ — ar} — b’o,, (B.90)
= 02(0]2)* - U;)(CLC —b?) (B.91)

Hence, the slope of the asymptote can be expressed as (using o2, = 1/a):

zbz b2
Zp
_opoy — oy )(ac — b?) (B.93)
B o2(ac2 —1) '
p p
ac — b2 ok —o?
_ 21’_ 7 (B.94)
@ O = %cmv
—p? o2, — o2
_ac {1 _ pQ—ZGMV} (B.95)
a 02— ey
This completes the proof of Equation (15).
[

Appendix C. Additional Analysis on Zero-Beta Rate Estimation

C.1. Test-Optimization Approach of Zero-Beta Rate Estimation

I summarize the existing zero-beta rate estimation methods into three categories: the
regression approach, the test-optimization approach, and the zero-beta portfolio approach.
The basic idea of the test-optimization approach is to optimally solve for a zero-beta rate
that makes the given factor model perform as well as possible when subjected to formal tests.
The idea originates with Kandel (1984), Kandel (1986), and Shanken (1986). These papers
construct the likelihood function of the data subject to the model restrictions and then solve
for the zero-beta rate that maximizes the constrained likelihood. Equivalently, the estimate
can be seen as minimizing the relevant test statistic—variants of the likelihood ratio test
(LRT) used across the papers. Intuitively, the zero-beta rate is “tilted” just enough to make
the model look as good as it possibly can in sample. Velu and Zhou (1999) uses GMM to
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estimate the zero-beta rate that makes the model’s pricing errors as small as possible. More
recently, Ferson et al. (2025) shows that the same logic implies choosing the zero-beta rate
that minimizes the gap between the maximum squared Sharpe ratio attainable with the test

assets and that implied by the model’s factors:

A = max LX) = rriin LRT(X\) = rr)l\ine'We = H)l\in (SR*(r, f) — SR*(f)) (C.1)
0 0 0 0

The first equality corresponds to the constrained likelihood maximization in Kandel (1984,
1986), the second to the test-statistic minimization in Shanken (1986), the third to the
pricing errors (¢) minimization with a GMM framework in Velu and Zhou (1999), and the
fourth to the Sharpe ratio criterion in Ferson et al. (2025). Put differently, the zero-beta rate
estimate is chosen to make the model’s factors lie as close as possible to the mean—variance
frontier of returns.

Instead of looking for a single value of the zero-beta rate and then calculating the a
standard error arount it, Beaulieu et al. (2013, 2023, 2025) ask a different question: “For
which possible values of the zero-beta rate would a hypothesis test fail to reject the given
factor model at a given significance level?” The set of all such “non-rejected” values forms
the confidence interval of the zero-beta rate.

In summary, the test-optimization approach does not so much validate the model as reveal
the most “forgiving” estimate of the zero-beta rate consistent with the data. However, forcing
the factor model to be accepted—or to fit the data as perfectly as possible—may impose an

overly strong assumption.

C.2.  Zero-Beta Rate Contour Curves in the Mean-Variance Diagram

Equation (6) provides the formula for the expected return (r,) of the minimum-variance
zero-beta portfolio with respect to the factor model benchmark portfolio p. In the mean-
variance diagram, the zero-beta rate contour curves are straight lines according to equation
(6). The space of inefficient portfolios can be divided into three regions, as illustrated in
Figure C.1. If portfolio p lies in region I, then the estimated zero-beta rate is downward
biased relative to the true unobserved risk-free rate (r, < ry). If portfolio p lies below the
GMYV portfolio in region III, then the zero-beta rate is higher than the GMV portfolio return
(r, > raumyv). If portfolio p lies in region II, then the zero-beta rate is upward biased relative
to the true risk-free rate and it is lower than the GMV portfolio return (ry < r, < rgmv).
Therefore, 7, could be downward biased or upward biased relative to r¢ depending on the

location of portfolio p. 7, may also be exactly equal to the unobserved 7 if the factor model
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Figure. C.1. Zero-Beta Rate Contour Lines and Portfolio Inefficiency

—Mean-variance frontier
—Portfolios with r, = ry
---------- Portfolios with equal 7,

________
_______

8 —
e
PR

Notes: This figure illustrates the estimated zero-beta rate contour lines in mean—variance space.
The black hyperbola represents the mean—variance frontier. Portfolios located on the blue solid
contour line imply a zero-beta rate equal to the true risk-free rate. This line extends leftward and
intersects the vertical axis at r;. Portfolios lying on the same blue dashed contour line imply an
identical zero-beta rate, corresponding to the intercept on the vertical axis if the line were
extended leftward (not shown). The space of inefficient portfolios can be divided into three
regions. If portfolio p lies in region I, then r, < ry; if it lies in region II, then ry < r, < rgymv;
and if it lies in region III, then r, > rgav.

happens to be lying on the boundary of region I and II, where (r, — ) /05 = (ry- —75) /07
This boundary is shown as the blue solid contour line in Figure 2. This line extends leftward
and intersects the vertical axis at r;. In addition, 2 plots other zero-beta rate contour
lines, where portfolios lying on the same blue dashed line imply an identical zero-beta rate,
corresponding to the intercept on the vertical axis if the line were extended leftward (not

shown).

C.3. Zero-Beta Rate and Portfolio Inefficiency

Proposition 2 (ii) explores how portfolio inefficiency impacts the associated zero-beta
rate estimation. Here, I illustrate the results in a hypothetical mean-variance space by
investigating two distinct types of portfolio inefficiency. In Figure C.2 (risk inefficiency), I fix
the expected return for inefficient portfolios (r,« = r,, = 1,,) and progressively increase their

volatilities (02. < o2 < o7,). Here, p* represents the efficient portfolio on the mean-variance
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Figure. C.2. Zero-Beta Rate and Portfolio Inefficiency (Constant Mean)

——Mean-variance frontier
—Zero-beta set for p*

- - -Zero-beta frontier for p;
- - -Zero-beta frontier for po

-
-
-

T o* Zp*
I~

Notes: This figure shows the relations between portfolio inefficiency and the level of estimated
zero-beta rate in the mean-standard deviation diagram. Holding the mean return constant, the
estimated zero-beta rate rises with the volatility of the inefficient portfolio p. Panel (b) holds the
volatility constant, the estimated zero-beta rate rises as the mean return of p falls.

frontier (MVF), while p; and p, have the same return but excess, uncompensated risk. This
panel shows how the zero-beta frontier and its minimum variance zero-beta portfolio shift
as the reference portfolio moves horizontally away from the efficient frontier. Holding the
mean return fixed, the estimated zero-beta rate (expected return of the minimum-variance
zero-beta portfolio) rises with the volatility of the inefficient portfolio p. In Figure C.3
(return inefficiency), I fix the volatility for inefficient portfolios (¢2. = o2 = o2,) and
progressively decrease their expected return (rp« > r, > r,,). Here, p* again represents the
efficient increase, while p; and p, take on the same amount of risk for a lower reward. This
panel shows how the zero-beta frontier and its minimum variance zero-beta portfolio shift
as the reference portfolio moves vertically downward from the efficient frontier. Holding the

volatility fixed, the estimated zero-beta rate rises as the mean return of p falls.
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Figure. C.3. Zero-Beta Rate and Portfolio Inefficiency (Constant Volatility)

——Mean-variance frontier
—Zero-beta set forp*
- - -Zero-beta frontier for p; ‘
- - -Zero-beta frontier for po

Lo N —
Tz z}\

Notes: This figure shows the relations between portfolio inefficiency and the level of estimated
zero-beta rate in the mean-standard deviation diagram. Holding the volatility constant, the
estimated zero-beta rate rises as the mean return of p falls.

C.4. Instrumented PCA (IPCA) Estimation

I estimate IPCA models following Kelly et al. (2019):

Tigr1 = (Zig) + B(2i) i1+ ipa (C.2)
a(zir) = 2;, Lo + Vg (C.3)
B(zit) = 2, Lp + vpis (C4)

where 7; 441 is the total return of stock ¢, f;; is a K-dimensional vector of factors, a(z;;) and
B(z;:) denote the intercept and risk loadings, modeled as linear functions of the 136 stock
characteristics, z; ;. Vq,: and vg;, represents components in o and 3 that are orthogonal to
characteristics. Substitute Equations (C.3) and (C.4) into (C.2), we have:

Tigr1 = Ziy (Do + Tpfig) + &5 (C.5)

where €111 = €i441 + Vair + Vgifit1 is a composite error term. Denote the N x 1 total

return vector as ryyq, the N X 1 composite error vector as &;,1, and the N x C' (C = 136)
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Table C.1: IPCA Model Performance and Alphas

Panel A: Zero-Investment Managed Portfolios

1 3 6 9
Total R? (%) 66.5 91.3 95.2 96.8
W, p-value (%) 0.00 0.00 25.2 32.6
Elay.] (Annualized, %) 0.16 0.32 0.40 0.53

Panel B: Unit-Investment Characteristic-Sorted Portfolios

1 3 6 9
Total R? (%) 75.4 93.1 94.4 95.3
Eloy+] (Annualized, %) 7.07 11.13 9.74 4.33

Notes: Panel A reports total R?’s, Wald test p-values for Hg : I'y = 0, average alphas across
portfolios and time, Efcy, ], where oy, is an element of the portfolio alpha vector

ap = Z,7:T,/N; using zero-investment managed portfolios, X1 = Z¢117¢41/Niy1. Panel B
reports total R?’s and average alphas across portfolios and time, Eloy ], where oy, is an element

of the portfolio alpha vector ay, = w;Z4T,, and w; denotes the unit-investment portfolio weights.

stock characteristics matrix as Z;,;. Then, the vector form of an IPCA model is:
rii1 = Zeyr (Do +pfiig) + E0q (C.6)

The optimization objective is to minimize the sum of squared model composite errors:

T !
min Z (l”t+1 — 2y Iy — Zt+lrﬂft+1> (I‘t+1 — 21Ty — Zt+lrﬁft+l) (C.7)

Fa,Fﬁ,fth 7

The first-order conditions (F.0O.C.) for this problem are:

-1
ft+1 = (F/ﬁzg_,'_thJrlFﬁ) F/BZ;H-l (rt+1 - Zt+1ra> (CS)
T o -1, T )
vec(I") = (Z(Zé—i—lzt—i—l) ® (ft-i-lft/—l—l)) (Z <Z;+1 ® ft+1> I‘t+1> (C.9)
t=1 t=1
where I denote I' = [I', 5] and f,1; = [1f/,,]. These system of equations are solved

numerically using the Alternative Least Squares (ALS) algorithm.
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Kelly et al. (2019) presents a managed-portfolio interpretation of IPCA. The estimated
IPCA factors and parameters can also be viewed as minimizing the pricing errors of managed
portfolio returns, which are constructed as weighted averages of individual stock returns
interacted with instruments: X;,1 = Z; 11441 /Nyy1, where Nyy 1 denotes the number of non-
missing stock returns at time t + 1. After estimating the model parameters, Kelly et al.
(2019) proceeds to test whether alphas arise as a function of characteristics: Hg : I'p, = 0. 1
follow the same bootstrap procedure to compute the p-values of this test.

Table C.1 Panel A reports total R? values and Wald test p-values for Hy : I'a = 0 using
the zero-investment managed portfolios X with 1, 3, 6, and 9 IPCA factors. Consistent
with Kelly et al. (2019), the IPCA models explain portfolio return variation well, with total
R? values exceeding 66%. With more than six factors, the Wald test p-values rise above
1%, leading to a failure to reject I', = 0 at the 1% level. For the zero-investment managed
portfolios, I compute the average alphas across portfolios and time, E[c, |, where ,,; is an
element of the portfolio alpha vector o, = Z;Z,I',/N;. These average alphas range from
0.16% to 0.53% on an annualized basis, suggesting that characteristic-related mispricings are
small in such zero-investment managed portfolios.

Note that each stock characteristic vector z; ;41 is rank-normalized to the (—1, 1) interval,
with elements summing to zero. This normalization ensures that the managed portfolios are
zero-investment portfolios, where the risk-free (zero-beta) rate cancels out. As an alternative
investigation, I construct 273 unit-investment characteristic-sorted portfolios based on the
portfolio weights (see Section 3.1) and use the estimated I', and I's to assess IPCA model
performance. Table C.1 Panel B reports total R? values for these portfolios, which are
similar to those in Panel A. More importantly, for unit-investment portfolios, Panel B also
presents the average alphas across portfolios and time, E[a,, ], where ay,; is an element of the
portfolio alpha vector o, = w;Z,I', and w,; denotes the unit-investment portfolio weights.
With I',, statistically zero, the average alphas should also be zero; however, Panel B shows
values ranging from 4.33% to 11.13% on an annualized basis. This evidence suggests that

the zero-alpha conclusion should be interpreted with caution.

Appendix D. Additional Empirical Results

D.1. Factor Model Statistical Performance

In addition to total R?, predictive R? measures the model explanatory power of test
assets using the factor risk premia, calculated as the prevailing sample average of factors up
to the last month:
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Table D.1: In-Sample Model R?

# Factors
Models Test Assets Metrics
1 3 6 9
Total R? 10.9 17.0 18.7 19.5
Individual Stocks
°F Pred R? 0.93 0.90 0.89 0.87
Total R? 89.4 94.1 95.2 95.4
Portfolios
Pred R? 3.42 3.42 3.42 3.42
Total R? 4.5 10.3 13.1 14.3
Individual Stocks
POA Pred R? 0.01 0.28 0.34 0.34
Total R? 94.1 97.4 98.1 98.3
Portfolios
Pred R? 3.42 3.42 3.42 3.42
Total R? 12.8 15.1 15.8 16.0
Individual Stocks
PCA Pred R? 0.81 0.79 0.78 0.77
Total R? 78.7 94.0 95.0 95.5
Portfolios
Pred R? 3.01 3.10 3.18 3.17
Total R? 12.4 13.3 13.5 13.5
Individual Stocks
AE Pred R? 1.12 1.02 1.09 1.16
Total R? 84.1 92.9 92.9 93.3
Portfolios
Pred R? 3.52 3.50 3.51 3.37

Notes: This table reports the in-sample total R2 and predictive R? in percentages (%) for FF,
PCA, ICA, and AE models with 1, 3, 6, and 9 factors.

Al A 2
) Z@t <7"i,t - /BiAtA)
Rpred =1- Z 9 .
it Tt

For comparison, total R? measures how well the realized factor returns explain realized

(D.1)

asset returns, whereas predictive R? evaluates how well a model’s conditional expected re-
turns explain realized asset returns. Table D.1 and D.2 present both performance metrics
for individual stocks and characteristic-sorted portfolios across the FF, PCA, IPCA, and AE
models, constructed in-sample and out-of-sample, respectively. Consistent with Gu et al.
(2021), I find that IPCA and AE models outperform the standard FF and PCA benchmarks
in terms of both total and predictive R?, for both individual stocks and characteristic-sorted
portfolios. As expected, predictive R? values for individual stocks are negative under the FF
and PCA models. Comparing IPCA and AE, I find that IPCA achieves slightly higher total
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Table D.2: Out-of-Sample Model R?

# Factors
Models Test Assets Metrics
1 3 6 9
Total R? 6.5 7.4 2.7 0.3
Individual Stocks
°F Pred R? -0.23 -0.21 -0.24 -0.25
Total R? 86.6 92.1 93.6 93.9
Portfolios
Pred R? 2.89 2.88 2.89 2.89
Total R? 7.4 6.9 7.1 7.2
Individual Stocks
POA Pred R? -1.09 -1.06 -1.07 -1.07
Total R? 92.3 96.2 97.1 97.5
Portfolios
Pred R? 2.88 2.88 2.88 2.88
Total R? 11.0 13.3 13.9 14.1
Individual Stocks
PCA Pred R? 0.54 0.55 0.54 0.52
Total R? 73.6 93.0 93.8 94.4
Portfolios
Pred R? 3.15 3.22 3.23 3.27
Total R? 10.2 11.3 11.3 11.3
Individual Stocks
AR Pred R? 0.66 0.78 0.71 0.81
Total R? 79.5 91.7 93.3 92.5
Portfolios
Pred R? 3.23 3.02 3.27 3.13

Notes: This table reports the out-of-sample total R2 and predictive R? in percentages (%) for FF,
PCA, ICA, and AE models with 1, 3, 6, and 9 factors.

R?, whereas AE delivers higher predictive R?, particularly for individual stocks.

Table D.2 replicates Tables 1 and 2 of Gu et al. (2021), but the magnitudes of predic-
tive R? for characteristic-sorted portfolios are considerably larger in my results. For IPCA
and AE, this difference likely stems from portfolio construction. I form 273 extreme-tercile
characteristic-sorted portfolios, whereas Gu et al. (2021) uses managed portfolios constructed
from the characteristics matrix, z; = (Z;_,Z;_1)Z;_1ri. For FF and PCA, the discrepancy
primarily reflects my inclusion of an intercept in model estimation. Since both FF and PCA
are estimated via OLS, including an intercept implies that predicted returns reduce to his-
torical averages. Consequently, the predictive R? for FF and PCA essentially capture the

predictive R? associated with expanding mean returns.
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D.2.  In-Sample Zero-Beta Rate Estimates

In Section 3.5, I examine two sets of characteristic-sorted portfolios that differ in their
GMYV portfolio returns to test this hypothesis of spurious robustness. Specifically, I rank the
characteristic-sorted portfolios by their return variances and select the 130 portfolios with the
highest variances as an alternative universe of test assets. The first asset group thus contains
the full set of 273 characteristic-sorted portfolios, while the second group includes only the
136 high-variance portfolios. The analytical portfolio weights for the GMV portfolio are
given by X714 /¢/S 1. The resulting in-sample mean returns of the GMV portfolio are 11.8%
and 12.3% for the two asset groups, respectively. This partition enables an examination of
whether zero-beta rate estimates differ systematically across asset universes characterized
by distinct GMV portfolio returns.

Figure. D.1. In-Sample Zero-Beta Rate across Different Asset Universes

16 -~ -Low-GMV
---High-GMV

14

12 &

(%)

Annualized

PCA

| | | |
1 3 6 9 1 3 6 9 1 3 6 9 1 3 6 9
Number of Factors

Notes: This figure shows the in-sample estimated zero-beta rates obtained from unit-investment,
minimum-variance zero-beta portfolios across two asset universes that differ in their GMV
portfolio returns. In the first asset group (black dashed line), which includes the full set of 273
characteristic-sorted portfolios, the mean GMV portfolio return is lower (11.8%). In the second
asset group (blue dashed line), consisting of the 136 high-variance portfolios, the mean GMV
portfolio return is higher (12.3%). Four classes of factor models—FF, PCA, IPCA, and AE—with
1, 3, 6, and 9 factors are analyzed. The estimated zero-beta rates are represented by circles,

squares, diamonds, and triangles, respectively.
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Figure D.1 shows the in-sample estimated zero-beta rates obtained from unit-investment,
minimum-variance zero-beta portfolios across two asset universes that differ in their GMV
portfolio returns. In the first asset group (black dashed line), which includes the full set
of 273 characteristic-sorted portfolios, the mean GMYV portfolio return is lower (11.8%). In
the second asset group (blue dashed line), consisting of the 130 high-variance portfolios, the
mean GMV portfolio return is higher (12.3%). Across both asset universes, the estimated
zero-beta rates appear robust to the choice of factor model and to the number of factors.
The literature tends to interpret this spurious robustness as evidence that these estimates
capture the true, unobserved risk-free rate. If that were the case, the zero-beta rates should
be similar across different asset universes. However, the results show that the zero-beta rates
are systematically higher in the universe with the higher GMV portfolio return, although
the difference between zero-beta rates is small due to the small difference between GMV
mean returns (11.8% vs 12.3%). Moreover, the average estimated rates lie close to the mean
GMYV portfolio returns within their respective asset groups. This pattern suggests that the
estimated zero-beta rates may primarily reflect the mean return of the GMV portfolio rather
than the true risk-free rate, providing empirical support for my analytical conjecture that

substantial model misspecification biases zero-beta rate estimates upward.

D.3.  Simulating Mean-Variance Parameters

Recall from Section 3.6.2, I calibrate the mean-variance frontier such that the true risk-
free rate (ry) is 3% annually, the return of the true Tangency portfolio (r,+) is 20% annually,
the mean and standard deviation of the global minimum-variance portfolio is rgay = 11%
and ogyy = 6.5% (annualized), respectively. Then, inefficient portfolios, corresponding to
misspecified factor models, are generated in the following procedure illustrated in Figure
D.2. The black curves represent the mean-variance frontier. For a randomly generated
inefficient portfolio p;, Panel (a) plots the zero-beta frontier and the minimum-variance
zero-beta portfolio, z,,. Applying equations (6) and (15), I compute the analytical zero-beta
rate and the maximum Sharpe ratios of zero-investment, zero-beta portfolios associated with
portfolio p;. In Panel (b), I plot p; in the rate-misspecification space. Similarly in Panel (c)
and (d), another inefficient portfolio ps is generated and represented by a pair of values of
zero-beta rate and the misspecification measure. Repeating this portfolio generating process
for 100,000 times, Panel (e) shows the uniform distribution of inefficient portfolios created
in the mean-variance space. [ restrict that the mean of the inefficient portfolio is higher
than rgy and not 20% higher than the mean return of the tangency portfolio. Standard
deviations of the inefficient portfolios are lower than 40%. Results and conclusions from this

simulation exercise is not affected by these boundary choices. All inefficient portfolios are

7



plotted in Panel (f) in the rate-misspecification space. Based on this scatter plot, Figure 8
compute the Cumulative Distribution Function (CDF') of the estimated zero-beta rates from
100,000 inefficient portfolios p and the probability that the estimated zero-beta rate (r,)

exceeds a given threshold (z), as a function of the maximum Sharpe ratio of the economy.

Figure. D.2. Simulated Zero-Beta Rate Estimates

Standard Deviation (Annualized, %)

(¢) Mean-Variance Space

78

Maximum Sharpe Ratio (Annualized)

(d) Rate-Misspecification Space

40 . . . . ~
9 —Mean-Variance Frontier 7
.. 357 —Zero-Beta Frontier 7~ ] 12r
= 30 1 N 0 e
< —qc: ? 148
= P h
E 25| 7 ] £ s ;
< - % < '
= 20t < T 1 : :
E < ° |
E 5 7 °p ] £ 4t !
e ~ '
el . < :
s 100; -------- Zp, 1 5 2r '
3 A Q ,
& 5¢ 1 g of :
=oery N H
0 : ‘ : ; . 2 ‘ ‘ ‘ ‘ ‘ L
0 5 10 15 20 25 0 0.2 0.4 0.6 0.8 1 1.2
Standard Deviation (Annualized, %) Maximum Sharpe Ratio (Annualized)
(a) Mean-Variance Space (b) Rate-Misspecification Space
40 ‘ ‘ ‘ ‘ ‘ —
= ——Mean-Variance Frontier L
. 357 — Zero-Beta Frontier Lo 1 2r
= 30F -7 1 O 10 e .
= s 5 *h
= 3 -q:' '
5 o5t L ] = 8f :
< N = S L2 .
o 20 o 1 Z ef | |
] .op. = : :
515 a £ : :
L . i n
~ . & : :
o I : : ,
Zwor .- 1 £ o | :
S #S------ Zp, Q , ,
& 517 7 é o H 1
= il’l"f N : :
h h
0 : ‘ : : ; ; 2 ‘ ‘ ‘ ‘ L L
0 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1 1.2



n

o
T

'/ — Mean-variance frontier
Inefficient Portfolios

p (Annualized, %)
n
o

Zero-Beta Rate (Annualized, %)

rs
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ -
o 5 10 15 20 25 30 3 40 0 02 04 06 08 1 12
o (Annualized, %) Maximum Sharpe Ratio (Annualized)
(e) Mean-Variance Space (f) Rate-Misspecification Space

Notes: This figure illustrates the procedure of generating inefficient portfolios (misspecified
model) and plot pairs of zero-beta rate estimates and maximum Sharpe ratios of zero-investment,

zero-beta portfolios.

D.j. Individual-Stock Level Proportional Transaction Costs

Figure. D.3. Individual-Stock Level Proportional Transaction Costs
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Notes: This figure shows the time variation of the mean, median, 5th percentile, and 95th
percentile of individual transaction costs from Jan 1960 to Dec 2024, measured using the average

low-frequency effective spreads described in Chen and Velikov (2023).
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D.5.  “Arbitrage” Portfolios

The literature has proposed alternative approaches to constructing beta-neutral portfo-
lios that hedge risks associated with stock characteristics while exploiting the mispricing
component of individual stock returns. These are referred to as “arbitrage” portfolios.?* Ta-
ble D.3 reports the performance of the “arbitrage” portfolios of Kelly, Pruitt, and Su (2019)
(KPS) and Kim, Korajczyk, and Neuhierl (2021) (KKN) with 1, 3, 6, and 9 factors. Both
approaches aim to extract the mispricing component (alphas) of individual stocks, orthogo-
nal to the risks associated with stock characteristics (betas). Portfolio weights are then set
proportional to the estimated mispricing signals, implying that the strategy goes long stocks
with high predicted alphas and short stocks with low or negative predicted alphas.

Table D.3 highlights that while these “arbitrage” portfolios may perform impressively
out-of-sample before transaction costs, their performance deteriorates sharply once costs are
accounted for. The KPS arbitrage portfolios are particularly striking: gross Sharpe ratios
approach 3.0. Yet either type of trading costs wipes out these gains—Sharpe ratios turn
highly negative accounting for proportional costs or price impact costs. The KKN portfolios
perform more modestly, with Sharpe ratios around 1 before costs, but after-cost Sharpe
ratios again reduce to near zero or negative.

In this paper, I construct zero-beta strategies using betas from 273 characteristic-sorted
portfolios rather than individual stocks. In contrast, both KPS and KKN conduct their
analyses at the individual stock level, which may account for the differences in investment
performance. My findings indicate that zero-beta strategies are more profitable when based
on characteristic-sorted portfolios once trading frictions are considered.

A further observation is that the performance of the KPS and KKN “arbitrage” portfolios
does not materially change with the number of factors. This suggests that their profitability
may not be driven by beta-neutrality, since removing additional systematic risk exposures
does not alter performance. This echoes the concern that individual-stock beta estimates

are relatively noisy, making them a weaker basis for portfolio construction.

Z3Both the zero-beta strategies and the “arbitrage” portfolios in Kelly et al. (2019) and Kim et al. (2021)
are not arbitrage in the classical, risk-free sense. Rather, they are forms of statistical arbitrage that use
quantitative models to identify potential mispricings and construct portfolios hedged against known sources
of systematic risk. They still bear risk, as true risk-free arbitrage may not exist in practice due to frictions
and limits to arbitrage (Shleifer and Vishny, 1997).
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Table D.3: Sharpe Ratios for “Arbitrage Portfolios” with Trading Costs (Annualized)

Methods KPS KRN

1-factor  3-factor  6-factor 9-factor 1-factor 3-factor 6-factor  9-factor
(1) 2.62 2.96 2.78 2.14 1.01 1.01 1.01 1.01
(2) -1.97 -1.38 -1.84 -1.77 0.05 0.04 0.05 0.04
(3) -2.93 -2.41 -2.46 -2.35 -0.88 -0.91 -0.94 -0.94
(4) -3.99 -3.03 -2.89 -2.53 -1.07 -1.11 -1.15 -1.16
(5) -3.62 -3.06 -2.91 -2.54 -1.08 -1.12 -1.16 -1.17
(1): Out-of-sample, no transaction costs.
(2): Out-of-sample, proportional costs.
(3): Out-of-sample, price impact costs (wealth by 2024: $ 5 billions).
(4): Out-of-sample, price impact costs (wealth by 2024: $ 50 billions).
(5): Out-of-sample, price impact costs (wealth by 2024: $ 100 billions).

Notes: The table reports the performance of the annualized Sharpe ratios of “arbitrage”
portfolios constructed in Kelly, Pruitt, and Su (2019) and Kim, Korajczyk, and Neuhierl (2021)
with 1, 3, 6, and 9 factors. Transaction costs include proportional trading costs and price impact

costs. Portfolio weights are scaled to target an annualized volatility of 15%.
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